首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4034篇
  免费   304篇
  国内免费   1篇
  2023年   42篇
  2022年   53篇
  2021年   143篇
  2020年   111篇
  2019年   114篇
  2018年   137篇
  2017年   132篇
  2016年   168篇
  2015年   231篇
  2014年   268篇
  2013年   299篇
  2012年   360篇
  2011年   316篇
  2010年   200篇
  2009年   187篇
  2008年   216篇
  2007年   225篇
  2006年   163篇
  2005年   172篇
  2004年   177篇
  2003年   124篇
  2002年   143篇
  2001年   36篇
  2000年   19篇
  1999年   32篇
  1998年   27篇
  1997年   40篇
  1996年   20篇
  1995年   21篇
  1994年   17篇
  1993年   15篇
  1992年   8篇
  1991年   6篇
  1990年   10篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   8篇
  1981年   10篇
  1980年   3篇
  1979年   3篇
  1977年   9篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1961年   3篇
排序方式: 共有4339条查询结果,搜索用时 15 毫秒
951.
952.
953.
The subcellular location and traffic of two selected chitin synthases (CHS) from Neurospora crassa, CHS-3 and CHS-6, labeled with green fluorescent protein (GFP), were studied by high-resolution confocal laser scanning microscopy. While we found some differences in the overall distribution patterns and appearances of CHS-3-GFP and CHS-6-GFP, most features were similar and were observed consistently. At the hyphal apex, fluorescence congregated into a conspicuous single body corresponding to the location of the Spitzenkörper (Spk). In distal regions (beyond 40 μm from the apex), CHS-GFP revealed a network of large endomembranous compartments that was predominantly comprised of irregular tubular shapes, while some compartments were distinctly spherical. In the distal subapex (20 to 40 μm from the apex), fluorescence was observed in globular bodies that appeared to disintegrate into vesicles as they advanced forward until reaching the proximal subapex (5 to 20 μm from the apex). CHS-GFP was also conspicuously found delineating developing septa. Analysis of fluorescence recovery after photobleaching suggested that the fluorescence of the Spk originated from the advancing population of microvesicles (chitosomes) in the subapex. The inability of brefeldin A to interfere with the traffic of CHS-containing microvesicles and the lack of colocalization of CHS-GFP with the endoplasmic reticulum (ER)-Golgi body fluorescent dyes lend support to the idea that CHS proteins are delivered to the cell surface via an alternative route distinct from the classical ER-Golgi body secretory pathway.Fungal hyphae elongate and branch by a complex process based on polarized secretion. Many studies have investigated the cellular and molecular components involved in shaping fungal cells, but no detailed understanding of the mechanisms that govern and regulate polarized fungal growth has been achieved (4, 25). In the yeast Saccharomyces cerevisiae, many of the main components of the secretory pathway, including some of the enzymes involved in cell wall formation, have been extensively characterized (32). Filamentous fungi encode homologues of some key components known from the yeast secretory pathway, but despite their apparent orthology, relatively little is known about how this pathway is organized to accomplish the highly polarized growth typical of hyphae. There are some differences in cell wall synthesis between filamentous fungi and S. cerevisiae. In hyphae of septate fungi, vesicles and other components accumulate at the apex, as part of the Spitzenkörper (Spk) (14, 22-24, 28). The composition and mode of action of this pleomorphic and dynamic structure have intrigued fungal biologists for many decades.Fungal cells have at least two types of well-defined secretory vesicles (5). It has been suggested that macrovesicles, or conventional secretory vesicles, carry the components of the amorphous phase of the cell wall, in addition to the load of extracellular enzymes (5, 27). There is a large body of evidence characterizing the chitin synthase (CHS)-carrying microvesicles as chitosomes (3, 8, 13, 30). CHS are β-glycosyltransferases that catalyze the polymerization of N-acetylglucosamine from UDP N-acetylglucosamine into chitin (47), a major structural polymer of the fungal cell wall (2). Chitin synthesis occurs in highly localized fashion both at the hyphal apices (7) and at nascent septa (29). Chitosomes are the smallest vesicles with the ability to form chitin microfibrils in vitro and have been suggested to carry and transport CHS to the cell surface at the apex of hyphae for cell wall synthesis (13, 37, 48, 55, 56). In recent years, studies on fungal CHS have concentrated mainly on gene identification. Given this wealth of information, we chose CHS as candidate markers to investigate vesicle traffic in fungal hyphae.Fungi have multiple chs genes grouped into two divisions, with seven classes, primarily on the basis of similarities in the primary sequence of the predicted proteins (12, 16, 37, 50). Division I includes classes I, II, and III, which share a catalytic domain surrounded by a hydrophilic N-terminal region and a hydrophobic C-terminal region (12). Division II includes classes IV, V, and VII, all with a catalytic domain preceded by a cytochrome b5-like domain. In addition, classes V and VII contain an N-terminal myosin motor-like domain, suggesting a direct interaction with the actin cytoskeleton (15, 20, 58). Class VI has not been assigned to either division and includes recently identified CHS of unknown function (16). Earlier studies suggest that the various CHS have specific roles in chitin cell wall synthesis that are time or space dependent (60). In contrast to most filamentous fungi, S. cerevisiae (46) and Candida albicans (40) have only three or four CHS isozymes, respectively. S. cerevisiae Chs1p, C. albicans Chs2p, and C. albicans Chs8p belong to class I; S. cerevisiae Chs2p and C. albicans Chs1p belong to class II; and S. cerevisiae Chs3p and C. albicans Chs3p belong to class IV (46). While potential roles in hyphal growth have been suggested for some of the seven CHS classes described in filamentous fungi (9, 64, 65), we lack specific information on the cellular localization and trafficking to their sites of action in regions of active cell wall growth for most of these proteins.The goal of this study was to elucidate the traffic of CHS-containing vesicles en route from their site of genesis to their site of exocytosis in living hyphae of Neurospora crassa. The availability of an almost-complete genome sequence for this fungus allowed the identification of seven open reading frames with high homology to previously described chs genes (10). We chose to trace the intracellular location and secretory paths of CHS-3 and CHS-6. Neurospora CHS-3 belongs to the previously reported class I CHS with known homologues in all fungi tested, including S. cerevisiae Chs1p. In contrast, CHS-6 is a newly identified CHS assigned to class VI, homologous to Aspergillus fumigatus ChsD (39) and Coccidioides posadasii CHS-6 (34) but with no apparent homologues in S. cerevisiae or C. albicans. To trace both proteins, we fused green fluorescent protein (GFP) to the carboxyl terminus of the CHS coding regions and analyzed the fate of the resulting CHS-3-GFP and CHS-6-GFP fusion proteins by high-resolution confocal laser scanning microscopy (CLSM) in living hyphae of N. crassa.  相似文献   
954.
Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cryb. The period mutant perL manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of perL flies, because a perL; cryb strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase.  相似文献   
955.
Biotechnology industry has recently been demanding nanoparticulate products (20-200 nm) such as viruses, plasmids, virus-like particles and drug delivery assemblies. These products are mainly used as gene delivery systems in gene therapy protocols. During the process development for the manufacture of these products, it is crucial to optimize the recovery and purification steps. Unfortunately, the high value of some bio-nanoparticles complicates the optimization studies. The solvent extraction method with aqueous two-phase systems (ATPS) has been used to successfully recover bioproducts on a large scale. In this study, the potential miniaturization of ATPS is presented. The partition behavior of pure bovine serum albumin (BSA) in PEG-800-phosphate and bacteriophage T4 in PEG 8000-phosphate and PEG 600-sulphate systems were studied at three different scales (10 g, 2 g and 300 microl). The results obtained showed that the volume ratio (V(R)) for BSA (V(R)=1.0) was comparable to the blank systems at the scales studied. Additionally, the partition coefficient (K) was also similar (K=0.05) with more than 82% of BSA concentrated in the bottom phase. Same system was challenged with bacteriophage T4 showing a V(R)=1.0 and K greater than 5 with the infective particles concentrated in the top phase. The bacteriophage T4 was concentrated in opposite phase in the PEG-600-sulfate system with a consistent V(R)=0.8 and K<0.2 for the scales analyzed. The partition behavior the bacteriophage T4 was comparable to that reported previously for adenoviral vectors in same system at 15 ml scale. The results obtained demonstrated that the miniaturization of ATPS is feasible and reproducible for the two models selected. This provides significant information about the miniaturization process of such ATPS for their potential generic applications in the recovery of different bio-nanoparticle products.  相似文献   
956.
Pig kidney fructose-1,6-bisphosphatase is a homotetrameric enzyme which does not contain tryptophan. In a previous report the guanidine hydrochloride-induced unfolding of the enzyme has been described as a multistate process [Reyes, A. M., Ludwig, H. C., Ya?ez, A. J., Rodriguez, P. H and Slebe, J. C. (2003) Biochemistry 42, 6956-6964]. To monitor spectroscopically the unfolding transitions, four mutants were constructed containing a single tryptophan residue either near the C1-C2 or the C1-C4 intersubunit interface of the tetramer. The mutants were shown to retain essentially all of the structural and kinetic properties of the enzyme isolated from pig kidney. The enzymatic activity, intrinsic fluorescence, size-exclusion chromatographic profiles and 1-anilinonaphthalene-8-sulfonate binding by the mutants were studied under unfolding equilibrium conditions. The unfolding profiles were multisteps, and formation of hydrophobic structures was detected. The enzymatic activity of wild-type and mutant FBPases as a function of guanidine hydrochloride concentration showed an initial enhancement (maximum approximately 30%) followed by a biphasic decay. The activity and fluorescence results indicate that these transitions involve conformational changes in the fructose-1,6-bisphosphate and AMP domains. The representation of intrinsic fluorescence data as a 'phase diagram' reveals the existence of five intermediates, including two catalytically active intermediates that have not been previously described, and provides the first spectroscopic evidence for the formation of dimers. The intrinsic fluorescence unfolding profiles indicate that the dimers are formed by selective disruption of the C1-C2 interface.  相似文献   
957.
CCR5 is a chemokine receptor used by HIV-1 to enter cells and has recently been found to act as a pathogen associated molecule pattern receptor. Current positive selection for the high frequency of a CCR5-Delta32 allele in humans has been attributed to resistance to HIV, smallpox, and plague infections. Using an intranasal mouse model of Y. pestis infection, we have found that lack of CCR5 does not enhance host resistance to Y. pestis infection and that CCR5-mediated responses might have a protective role. CCR5-/- mice exhibited higher levels of circulating RANTES and MIP-1alpha than those exhibited by wild-type mice at the baseline and throughout the course of Y. pestis infection. High levels of RANTES and MIP-1alpha, which are CCR5 ligands that mediate Natural Killer cell migration, may reflect compensation for the absence of CCR5 signaling.  相似文献   
958.
The integrin alpha(v)beta3, whose alpha(v) subunit is encoded by the ITGAV gene, plays a key role in angiogenesis. Hyperangiogenesis is involved in rheumatoid arthritis (RA) and the ITGAV gene is located in 2q31, one of the suggested RA susceptibility loci. Our aim was to test the ITGAV gene for association and linkage to RA in a family-based study from the European Caucasian population. Two single nucleotide polymorphisms were genotyped by PCR-restriction fragment length polymorphism in 100 French Caucasian RA trio families (one RA patient and both parents), 100 other French families and 265 European families available for replication. The genetic analyses for association and linkage were performed using the comparison of allelic frequencies (affected family-based controls), the transmission disequilibrium test, and the genotype relative risk.We observed a significant RA association for the C allele of rs3738919 in the first sample (affected family-based controls, RA index cases 66.5% versus controls 56.7%; P = 0.04). The second sample showed the same trend, and the third sample again showed a significant RA association. When all sets were combined, the association was confirmed (affected family-based controls, RA index cases 64.6% versus controls 58.1%; P = 0.005). The rs3738919-C allele was also linked to RA (transmission disequilibrium test, 56.5% versus 50% of transmission; P = 0.009) and the C-allele-containing genotype was more frequent in RA index cases than in controls (RA index cases 372 versus controls 339; P = 0.002, odds ratio = 1.94, 95% confidence interval = 1.3-2.9). The rs3738919-C allele of the ITGAV gene is associated with RA in the European Caucasian population, suggesting ITGAV as a new minor RA susceptibility gene.  相似文献   
959.
960.
MOTIVATION: The blastp and tblastn modules of BLAST are widely used methods for searching protein queries against protein and nucleotide databases, respectively. One heuristic used in BLAST is to consider only database sequences that contain a high-scoring match of length at most 5 to the query. We implemented the capability to use words of length 6 or 7. We demonstrate an improved trade-off between running time and retrieval accuracy, controlled by the score threshold used for short word matches. For example, the running time can be reduced by 20-30% while achieving ROC (receiver operator characteristic) scores similar to those obtained with current default parameters. AVAILABILITY: The option to use long words is in the NCBI C and C++ toolkit code for BLAST, starting with version 2.2.16 of blastall. A Linux executable used to produce the results herein is available at: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/protein_longwords  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号