首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   64篇
  2023年   11篇
  2022年   13篇
  2021年   31篇
  2020年   22篇
  2019年   29篇
  2018年   45篇
  2017年   36篇
  2016年   39篇
  2015年   70篇
  2014年   54篇
  2013年   76篇
  2012年   100篇
  2011年   61篇
  2010年   45篇
  2009年   42篇
  2008年   53篇
  2007年   34篇
  2006年   23篇
  2005年   34篇
  2004年   36篇
  2003年   27篇
  2002年   19篇
  2001年   16篇
  2000年   13篇
  1999年   12篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   10篇
  1993年   5篇
  1992年   5篇
  1990年   2篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1967年   2篇
  1959年   1篇
排序方式: 共有1009条查询结果,搜索用时 46 毫秒
991.
Context: Prognostic value of ST2 levels and dynamics has not been investigated in acute heart failure (AHF) using prospective real-life measurements.

Objective: The objective of this study is to investigate the prognostic value of ST2 in AHF.

Methods: ST2 levels were determined at admission (n?=?182) and discharge (n?=?85). Primary endpoint was the composite of all-cause death and HF rehospitalisation at one year.

Results: Discharge ST2 (HR 2.42 [95% CI 1.46–4], p?=?0.001) and ΔST2 (HR 2.32 [95% CI 1.21–4.57], p?=?0.01) but not admission ST2, remained independently prognostic for the primary endpoint after comprehensive multivariable adjustment. ST2 significantly improved prognosis stratification on top of clinical variables and NTproBNP.

Conclusions: Routine clinical use of discharge ST2 and ST2 dynamics provide independent prognostic information.  相似文献   
992.
Primase-polymerases (Ppol) are one of the few enzymes able to start DNA synthesis on ssDNA templates. The role of Thermus thermophilus HB27 Ppol, encoded along a putative helicase (Hel) within a mobile genetic element (ICETh2), has been studied. A mutant lacking Ppol showed no effects on the replication of the element. Also, no apparent differences in the sensitivity to DNA damaging agents and other stressors or morphological changes in the mutant cells were detected. However, the mutants lacking Ppol showed an increase in two to three orders of magnitude in their transformation efficiency with plasmids and genomic DNA acquired from the environment (eDNA), independently of its origin and G + C content. In contrast, no significant differences with the wild type were detected when the cells received the DNA from other T. thermophilus partners in conjugation-like mating experiments. The similarities of this behaviour with that shown by mutants lacking the Argonaute (ThAgo) protein suggests a putative partnership Ppol-ThAgo in the DNA–DNA interference mechanism of defence, although other eDNA defence mechanisms independent of ThAgo cannot be discarded.  相似文献   
993.
The endophytic bacterium Pantoea agglomerans DAPP-PG 734 was previously isolated from olive knots caused by infection with Pseudomonas savastanoi pv. savastanoi DAPP-PG 722. Whole-genome analysis of this P. agglomerans strain revealed the presence of a Hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To assess the role of the P. agglomerans T3SS in the interaction with Psavastanoi pv. savastanoi, we generated independent knockout mutants in three Hrp genes of the P. agglomerans DAPP-PG 734 T3SS (hrpJ, hrpN, and hrpY). In contrast to the wildtype control, all three mutants failed to cause a hypersensitive response when infiltrated in tobacco leaves, suggesting that P. agglomerans T3SS is functional and injects effector proteins in plant cells. In contrast to P. savastanoi pv. savastanoi DAPP-PG 722, the wildtype strain Pagglomerans DAPP-PG 734 and its Hrp T3SS mutants did not cause olive knot disease in 1-year-old olive plants. Coinoculation of Psavastanoi pv. savastanoi with P. agglomerans wildtype strains did not significantly change the knot size, while the DAPP-PG 734 hrpY mutant induced a significant decrease in knot size, which could be complemented by providing hrpY on a plasmid. By epifluorescence microscopy and confocal laser scanning microscopy, we found that the localization patterns in knots were nonoverlapping for Psavastanoi pv. savastanoi and P. agglomerans when coinoculated. Our results suggest that suppression of olive plant defences mediated by the Hrp T3SS of P. agglomerans DAPP-PG 734 positively impacts the virulence of Psavastanoi pv. savastanoi DAPP-PG 722.  相似文献   
994.
A comparative kinetic study was carried out on the anaerobic digestion of olive mill wastewater (OMW) and OMW that was previously fermented with Geotrichum candidum, Azotobacter chroococcum and Aspergillus terreus. The reactors used were continuously fed and contained sepiolite as support for the mediating bacteria. A kinetic model for multicomponent substrate removal by anaerobic digestion has been used. The model is based on the linear removal concept which is a special case of the broader Monod equation. The second-order kinetic constant, k 2( s ), was found to be influenced by the pretreatment carried out, and was 4.2, 4.0 and 2.5 times higher for Aspergillus, Azotobacter and Geotrichum-pretreated OMWs than that obtained in the anaerobic digestion of untreated OMW. This was significant at 95% confidence level. This behaviour is believed to be due to the lower levels of phenolic compounds and biotoxicity present in the pretreated OMWs. In fact, the kinetic constant increased when the phenolic compound content and biotoxicity of the pretreated OMWs decreased. In addition, the macroenergetic parameters of the anaerobic digestion of OMW, i.e. the specific rate of substrate uptake for cell maintenance, m, and the yield coefficient for the biomass, Y, decreased by a factor of 2.4, 3.6 and 5.1 and increased by a factor of 1.9, 2.2 and 2.4 respectively, for the OMWs previously treated with Geotrichum candidum, Azotobacter chroococcum and Aspergillus terreus in relation to the observed values for the untreated OMW.  相似文献   
995.
996.
997.
998.
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.  相似文献   
999.
1000.
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号