首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2032篇
  免费   286篇
  国内免费   1篇
  2024年   5篇
  2023年   18篇
  2022年   30篇
  2021年   102篇
  2020年   69篇
  2019年   78篇
  2018年   104篇
  2017年   88篇
  2016年   138篇
  2015年   157篇
  2014年   148篇
  2013年   186篇
  2012年   152篇
  2011年   138篇
  2010年   130篇
  2009年   70篇
  2008年   72篇
  2007年   75篇
  2006年   64篇
  2005年   70篇
  2004年   51篇
  2003年   38篇
  2002年   48篇
  2001年   28篇
  2000年   20篇
  1999年   22篇
  1997年   12篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   9篇
  1990年   7篇
  1989年   9篇
  1988年   12篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   10篇
  1983年   13篇
  1982年   8篇
  1980年   4篇
  1979年   4篇
  1975年   4篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1939年   5篇
  1857年   4篇
排序方式: 共有2319条查询结果,搜索用时 15 毫秒
51.
Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.  相似文献   
52.
Determine if sex differences exist in clinical characteristics and outcomes of adults hospitalized for coronavirus disease 2019 (COVID-19) in a US healthcare system. Case series study. Sequentially hospitalized adults admitted for COVID-19 at two tertiary care academic hospitals in New Orleans, LA, between 27 February and 15 July 2020. Measures included demographics, comorbidities, presenting symptoms, and laboratory results. Outcomes included intensive care unit admission (ICU), invasive mechanical ventilation (IMV), and in-hospital death. We included 776 patients (median age 60.5 years; 61.4% women, 75% non-Hispanic Black). Rates of ICU, IMV, and death were similar in both sexes. In women versus men, obesity (63.8 vs 41.6%, P < 0.0001), hypertension (77.6 vs 70.1%, P = 0.02), diabetes (38.2 vs 31.8%, P = 0.06), chronic obstructive pulmonary disease (COPD, 22.1 vs 15.1%, P = 0.015), and asthma (14.3 vs 6.9%, P = 0.001) were more prevalent. More women exhibited dyspnea (61.2 vs 53.7%, P = 0.04), fatigue (35.7 vs 28.5%, P = 0.03), and digestive symptoms (39.3 vs 32.8%, P = 0.06) than men. Obesity was associated with IMV at a lower BMI (> 35) in women, but the magnitude of the effect of morbid obesity (BMI ≥ 40) was similar in both sexes. COPD was associated with ICU (adjusted OR (aOR), 2.6; 95%CI, 1.5–4.3) and IMV (aOR, 1.8; 95%CI, 1.2–3.1) in women only. Diabetes (aOR, 2.6; 95%CI, 1.2–2.9), chronic kidney disease (aOR, 2.2; 95%CI, 1.3–5.2), elevated neutrophil-to-lymphocyte ratio (aOR, 2.5; 95%CI, 1.4–4.3), and elevated ferritin (aOR, 3.6; 95%CI, 1.7–7.3) were independent predictors of death in women only. In contrast, elevated D-dimer was an independent predictor of ICU (aOR, 7.3; 95%CI, 2.7–19.5), IMV (aOR, 6.5; 95%CI, 2.1–20.4), and death (aOR, 4.5; 95%CI, 1.2–16.4) in men only. This study highlights sex disparities in clinical determinants of severe outcomes in COVID-19 patients that may inform management and prevention strategies to ensure gender equity.  相似文献   
53.
Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036–1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.  相似文献   
54.
In this study, groups of B6C3F1 male mice were treated with dichloroacetate (DCA), trichloroacetate (TCA), and mixtures of the compounds (Mix I, II, and III) daily by gavage, for 13 weeks. The tested doses were 7.5, 15, and 30 mg DCA/kg/day and 12.5, 25, and 50 mg TCA/kg/day. The DCA: TCA ratios in Mix I, II, and III were 7.5:12.5, 15:25, and 30:50 mg/kg/day, respectively. Peritoneal lavage cells were collected at the end of the treatment period and assayed for the biomarkers of phagocytic activation, including superoxide anion and tumor necrosis factor‐alpha production, and myeloperoxidase activity. The mixtures produced nonlinear effects on the biomarkers of phagocytic activation, with Mix I and II effects were found to be additive, but Mix III effects were found to be less than additive. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:237‐242, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21476  相似文献   
55.
Synapses are highly dynamic structures that mediate cell–cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic proteome have not been studied.To test the feasibility of carrying out an unbiased large-scale approach, we investigated alterations in the molecular composition of synaptic spines following mass stimulation of the central nervous system induced by pilocarpine. We observed widespread changes in relative synaptic abundances encompassing essentially all proteins, supporting the view that the molecular composition of the postsynaptic density is tightly regulated. In most cases, we observed that members of gene families displayed coordinate regulation even when they were not known to physically interact.Analysis of correlated synaptic localization revealed a tightly co-regulated cluster of proteins, consisting of mainly glutamate receptors and their adaptors. This cluster constitutes a functional core of the postsynaptic machinery, and changes in its size affect synaptic strength and synaptic size. Our data show that the unbiased investigation of activity-dependent signaling of the postsynaptic density proteome can offer valuable new information on synaptic plasticity.Excitatory synaptic transmission is the primary mode of cell–cell communication in the central nervous system. The efficacy of synaptic transmission is highly regulated, and alterations in the strength of synaptic signaling within networks of neurons provide a mechanism for learning and memory storage, as well as for overall network stability. Modulation of synapse efficacy can occur through alterations in the structure and composition of the postsynaptic spine. The synaptic abundance of several molecules has been shown to be regulated in response to activity (1).The levels of individual proteins at postsynaptic spines are regulated through multiple processes. Active transport mechanisms exist and have been well characterized for AMPA-type glutamate receptors (AMPA-Rs)1 via either insertion into the synapse or tighter association with the postsynaptic density (PSD) following lateral diffusion within the cell membrane (2). In addition to AMPA-Rs, other proteins known to be subject to activity-dependent regulation include calcium calmodulin-dependent protein kinase II alpha and beta, NMDA-type glutamate receptors (NMDA-Rs), and proteosome subunits (35). Synaptic protein content is dysregulated in a number of neuropsychiatric and neurodegenerative diseases, including Alzheimer''s disease and fragile X mental retardation (68).Most studies reported thus far have focused on a small number of selected molecules in individual experiments using a subset of synapses. Whereas learning and memory rely on the differential response of individual synapses to their specific input patterns, overall network excitability has to be maintained by homeostatic means. This homeostasis is governed by multiple pathways, and very little is known about the principles that regulate synaptic protein content across large numbers of synapses and neurons. The contributions of individual pathways and the interactions among them are largely unknown.In order to explore synaptic dynamics with a global view, we took advantage of a chemically induced mass stimulation protocol to stimulate synapses broadly throughout the central nervous system. We employed mass spectrometry and isotopically encoded isobaric peptide tagging with the iTRAQ reagent to quantify changes in the abundance of 893 proteins (9). We then analyzed changes in the relative abundance of these proteins at 0, 10, 20, and 60 min after the onset of stimulation.We observed evidence of the coordinated activation of synaptic protein groups, thereby identifying functional core complexes within the PSD. We demonstrate that adopting a quantitative systems biology approach provides insight allowing for a new level of analysis of synaptic function.  相似文献   
56.
Two concentrations (10-5M and 10-3M) of both GA3 and 2,4-D were used as foliar spray to evaluate the response of date palm (Phoenix dactylifera L.) cv. Khedri seedlings. They affected some of the anatomical characteristics of the first leaf emerging after the beginning of the spray. The high concentration of GA3 increased the size of the midrib and its vascular bundle numbers. Both low and high concentrations of 2,4-D inhibited the formation of the midrib. 2,4-D in both low and high concentrations decreased the number of vessels in both protoxylem and metaxylem and also decreased their diameters, where as GA3 in low and high concentrations have less effect on the number of vessels and its diameters. GA3 in high concentration increased the number of vascular bundles in 1mm long of the leaf blade, while 2,4-D in low and high concentrations decreased their numbers. 10-3M of 2,4-D increased the size and layers of special hypodermal cells.  相似文献   
57.
Death receptor-mediated hepatocyte apoptosis is implicated in a wide range of liver diseases including viral and alcoholic hepatitis, ischemia/reperfusion injury, fulminant hepatic failure, cholestatic liver injury, as well as cancer. Deletion of NF-κB essential modulator in hepatocytes (IKKγ/Nemo) causes spontaneous progression of TNF-mediated chronic hepatitis to hepatocellular carcinoma (HCC). Thus, we analyzed the role of death receptors including TNFR1 and TRAIL in the regulation of cell death and the progression of liver injury in IKKγ/Nemo-deleted livers. We crossed hepatocyte-specific IKKγ/Nemo knockout mice (NemoΔhepa) with constitutive TNFR1−/− and TRAIL−/− mice. Deletion of TNFR1, but not TRAIL, decreased apoptotic cell death, compensatory proliferation, liver fibrogenesis, infiltration of immune cells as well as pro-inflammatory cytokines, and indicators of tumor growth during the progression of chronic liver injury. These events were associated with diminished JNK activation. In contrast, deletion of TNFR1 in bone-marrow-derived cells promoted chronic liver injury. Our data demonstrate that TNF- and not TRAIL signaling determines the progression of IKKγ/Nemo-dependent chronic hepatitis. Additionally, we show that TNFR1 in hepatocytes and immune cells have different roles in chronic liver injury–a finding that has direct implications for treating chronic liver disease.  相似文献   
58.
In spliceosomes, dynamic RNA/RNA and RNA/protein interactions position the pre-mRNA substrate for the two chemical steps of splicing. Not all of these interactions have been characterized, in part because it has not been possible to arrest the complex at clearly defined states relative to chemistry. Previously, it was shown in yeast that the DEAD/H-box protein Prp22 requires an extended 3′ exon to promote mRNA release from the spliceosome following second-step chemistry. In line with that observation, we find that shortening the 3′ exon blocks cleaved lariat intron and mRNA release in human splicing extracts, which allowed us to stall human spliceosomes in a new post-catalytic complex (P complex). In comparison to C complex, which is blocked at a point following first-step chemistry, we detect specific differences in RNA substrate interactions near the splice sites. These differences include extended protection across the exon junction and changes in protein crosslinks to specific sites in the 5′ and 3′ exons. Using selective reaction monitoring (SRM) mass spectrometry, we quantitatively compared P and C complex proteins and observed enrichment of SF3b components and loss of the putative RNA-dependent ATPase DHX35. Electron microscopy revealed similar structural features for both complexes. Notably, additional density is present when complexes are chemically fixed, which reconciles our results with previously reported C complex structures. Our ability to compare human spliceosomes before and after second-step chemistry has opened a new window to rearrangements near the active site of spliceosomes, which may play roles in exon ligation and mRNA release.  相似文献   
59.
Obesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   
60.
Campylobacter jejuni is the leading cause of human bacterial gastroenteritis worldwide, but source attribution of the organism is difficult. Previously, DNA microarrays were used to investigate isolate source, which suggested a non‐livestock source of infection. In this study we analysed the genome content of 162 clinical, livestock and water and wildlife (WW) associated isolates combined with the previous study. Isolates were grouped by genotypes into nine clusters (C1 to C9). Multilocus sequence typing (MLST) data demonstrated that livestock associated clonal complexes dominated clusters C1–C6. The majority of WW isolates were present in the C9 cluster. Analysis of previously reported genomic variable regions demonstrated that these regions were linked to specific clusters. Two novel variable regions were identified. A six gene multiplex PCR (mPCR) assay, designed to effectively differentiated strains into clusters, was validated with 30 isolates. A further five WW isolates were tested by mPCR and were assigned to the C7‐C9 group of clusters. The predictive mPCR test could be used to indicate if a clinical case has come from domesticated or WW sources. Our findings provide further evidence that WW C. jejuni subtypes show niche adaptation and may be important in causing human infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号