首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2889篇
  免费   191篇
  国内免费   2篇
  2023年   3篇
  2022年   7篇
  2021年   35篇
  2020年   25篇
  2019年   30篇
  2018年   35篇
  2017年   29篇
  2016年   60篇
  2015年   116篇
  2014年   110篇
  2013年   164篇
  2012年   213篇
  2011年   188篇
  2010年   121篇
  2009年   138篇
  2008年   212篇
  2007年   228篇
  2006年   217篇
  2005年   231篇
  2004年   217篇
  2003年   180篇
  2002年   159篇
  2001年   19篇
  2000年   17篇
  1999年   30篇
  1998年   25篇
  1997年   32篇
  1996年   26篇
  1995年   22篇
  1994年   21篇
  1993年   15篇
  1992年   21篇
  1991年   10篇
  1990年   14篇
  1989年   14篇
  1988年   11篇
  1987年   9篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   6篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1971年   2篇
  1968年   4篇
排序方式: 共有3082条查询结果,搜索用时 109 毫秒
61.
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.  相似文献   
62.
Allogrooming, where an individual grooms another, has been extensively studied in various social animals to understand its role in the evolution of cooperation/prosociality. In existing studies in mammals, allogrooming has been suggested to exhibit not only a hygiene but also a social function. Allopreening, a topic of increasing interest in mammals but recently also in birds, has been studied mostly with mature animals. However, in some species immature individuals also show allopreening and its function remains poorly understood. Crows, Corvus spp., are an ideal model to study this phenomenon, because juveniles form year-round aggregates during their long juvenile stage (e.g., throughout 3–4 years). Here, we investigated the function of allopreening in juvenile groups of wild-caught large-billed crows (C. macrorhynchos). Allopreening frequency and duration for three groups of wild-caught juveniles were analysed to determine whether there was a symmetrical (i.e., reciprocal) or asymmetrical allopreening pattern, and if sex composition of the dyad and/or relative dominance of donor and recipient had an effect. We found that both the frequency and duration of male allopreening correlated with frequency of aggression. Allopreening between both males and females occurred unidirectionally from dominants to subordinates but not in the opposite direction. On the contrary, allopreening between a male and a female was found to be reciprocated, though the absolute frequency and duration were both greater in males than in females. These results suggest that the social function of allopreening in juvenile crows differs depending on the sex composition of the dyad, functioning as a dominance signal for same-sex dyads, and serving a social bonding function for opposite-sex dyads. These findings may reflect the potentially crucial roles of allopreening in within-sex competition and opposite-sex attraction during the 3 year-long juvenile stage affecting future mate choice in lifelong monogamy.  相似文献   
63.
The coenzyme A biosynthesis pathways in most archaea involve two unique enzymes, pantoate kinase and phosphopantothenate synthetase, to convert pantoate to 4′-phosphopantothenate. Here, we report the first crystal structure of pantoate kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis and its complex with ATP and a magnesium ion. The electron density for the adenosine moiety of ATP was very weak, which most likely relates to its broad nucleotide specificity. Based on the structure of the active site that contains a glycerol molecule, the pantoate binding site and the roles of the highly conserved residues are suggested.  相似文献   
64.
65.
66.
We have analyzed the ranging patterns of the Mimikire group (M group) of chimpanzees in the Mahale Mountains National Park, Tanzania. During 16 years, the chimpanzees moved over a total area of 25.2 or 27.4 km2, as estimated by the grid-cell or minimum convex polygon (MCP) methods, respectively. Annually, the M group used an average of 18.4 km2, or approximately 70 %, of the total home-range area. The chimpanzees had used 80 % of their total home range after 5 years and 95 % after 11 years. M group chimpanzees were observed more than half of the time in areas that composed only 15 % of their total home range. Thus, they typically moved over limited areas, visiting other parts of their range only occasionally. On average, the chimpanzees used 7.6 km2 (in MCP) per month. Mean monthly range size was smallest at the end of the rainy season and largest at the end of the dry season, but there was much variability from year to year. The chimpanzees used many of the same areas every year when Saba comorensis fruits were abundant between August and January. In contrast, the chimpanzees used several different areas of their range in June. Here range overlap between years was relatively small. Over the 16 years of the study we found that the M group reduced their use of the northern part of their range and increased their frequency of visits to the eastern mountainous side of their home range. Changes in home-range size correlated positively with the number of adult females but not with the number of adult males. This finding does not support a prediction of the male-defended territory model proposed for some East African chimpanzee unit-groups.  相似文献   
67.
Cyclin-dependent kinase 5 (Cdk5) is a brain-specific membrane-bound protein kinase that is activated by binding to the p35 or p39 activator. Previous studies have focused on p35-Cdk5, and little is known regarding p39-Cdk5. The lack of functional understanding of p39-Cdk5 is due, in part, to the labile property of p39-Cdk5, which dissociates and loses kinase activity in nonionic detergent conditions. Here we investigated the structural basis for the instability of p39-Cdk5. p39 and p35 contain N-terminal p10 regions and C-terminal Cdk5 activation domains (AD). Although p35 and p39 show higher homology in the C-terminal AD than the N-terminal region, the difference in stability is derived from the C-terminal AD. Based on the crystal structures of the p25 (p35 C-terminal region including AD)-Cdk5 complex, we simulated the three-dimensional structure of the p39 AD-Cdk5 complex and found differences in the hydrogen bond network between Cdk5 and its activators. Three amino acids of p35, Asp-259, Asn-266, and Ser-270, which are involved in hydrogen bond formation with Cdk5, are changed to Gln, Gln, and Pro in p39. Because these three amino acids in p39 do not participate in hydrogen bond formation, we predicted that the number of hydrogen bonds between p39 and Cdk5 was reduced compared with p35 and Cdk5. Using substitution mutants, we experimentally validated that the difference in the hydrogen bond network contributes to the different properties between Cdk5 and its activators.  相似文献   
68.
Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4−/−Abca4−/−Rdh8−/− mice displayed milder retinal degenerative phenotypes than Abca4−/−Rdh8−/− mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.  相似文献   
69.
The voltage-sensor domain (VSD) is a functional module that undergoes structural transitions in response to membrane potential changes and regulates its effectors, thereby playing a crucial role in amplifying and decoding membrane electrical signals. Ion-conductive pore and phosphoinositide phosphatase are the downstream effectors of voltage-gated channels and the voltage-sensing phosphatase, respectively. It is known that upon transition, the VSD generally acts on the region C-terminal to S4. However, whether the VSD also induces any structural changes in the N-terminal region of S1 has not been addressed directly. Here, we report the existence of such an N-terminal effect. We used two distinct optical reporters—one based on the Förster resonance energy transfer between a pair of fluorescent proteins, and the other based on fluorophore-labeled HaloTag—and studied the behavior of these reporters placed at the N-terminal end of the monomeric VSD derived from voltage-sensing phosphatase. We found that both of these reporters were affected by the VSD transition, generating voltage-dependent fluorescence readouts. We also observed that whereas the voltage dependencies of the N- and C-terminal effects appear to be tightly coupled, the local structural rearrangements reflect the way in which the VSD is loaded, demonstrating the flexible nature of the VSD.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号