首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2861篇
  免费   139篇
  2023年   6篇
  2022年   16篇
  2021年   48篇
  2020年   16篇
  2019年   35篇
  2018年   41篇
  2017年   32篇
  2016年   48篇
  2015年   82篇
  2014年   81篇
  2013年   185篇
  2012年   188篇
  2011年   177篇
  2010年   117篇
  2009年   120篇
  2008年   204篇
  2007年   217篇
  2006年   181篇
  2005年   165篇
  2004年   205篇
  2003年   162篇
  2002年   154篇
  2001年   69篇
  2000年   48篇
  1999年   40篇
  1998年   33篇
  1997年   30篇
  1996年   19篇
  1995年   21篇
  1994年   12篇
  1993年   16篇
  1992年   29篇
  1991年   32篇
  1990年   17篇
  1989年   23篇
  1988年   17篇
  1987年   7篇
  1986年   11篇
  1985年   9篇
  1984年   10篇
  1983年   10篇
  1982年   9篇
  1981年   5篇
  1979年   8篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1975年   6篇
  1973年   6篇
  1967年   4篇
排序方式: 共有3000条查询结果,搜索用时 281 毫秒
141.
Caenorhabditis elegans CLK-1 was identified from long-lived mutant worms, and is believed to be involved in ubiquinone biosynthesis. The protein belongs to the eukaryotic CLK-1/Coq7p family, which is also similar to the bacterial Coq7 family, that hydroxylates demethoxyubiquinone, resulting in the formation of hydroxyubiquinone, a precursor of ubiquinone. In Escherichia coli, the corresponding reaction is catalyzed by UbiF, a member of a distinct class of hydroxylase. Although previous studies suggested that the eukaryotic CLK-1/Coq7 family is a hydroxylase of demethoxyubiquinone, there was no direct evidence to show the enzymatic activity of the eukaryotic CLK-1/Coq7 family. Here we show that the plasmid encoding C. elegans CLK-1 supported aerobic respiration on a non-fermentable carbon source of E. coli ubiF mutant strain and rescued the ability to synthesize ubiquinone, suggesting that the eukaryotic CLK-1/Coq7p family could function as bacterial UbiF.  相似文献   
142.
Succinate-ubiquinone reductase (complex II) is an important enzyme complex in both the tricarboxylic acid cycle and aerobic respiration. A recent study showed that defects in human complex II are associated with cancers as well as mitochondrial diseases. Mutations in the four subunits of human complex II are associated with a wide spectrum of clinical presentations. Such tissue-specific clinical symptoms suggest the presence of multiple isoforms of the subunits, but subunit isoforms have not been previously reported. In the present study, we identified two distinct cDNAs for the human flavoprotein subunit (Fp) from a single individual, and demonstrated expression of these two isoforms in skeletal muscle, liver, brain, heart and kidney. Interestingly, one of the Fp isoforms was encoded as an intronless gene.  相似文献   
143.
A study of the ontogeny of the lateral line system in leptocephali of the Japanese eel Anguilla japonica reveals the existence of three morphologically different types of lateral line organs. Type I is a novel sensory organ with hair cells bearing a single kinocilium, lacking stereocilia, distributed mainly on the head of larvae, and morphologically different from typical superficial neuromasts of the lateral line system. Its developmental sequence suggests that it may be a presumptive canal neuromast. Type II is an ordinary superficial neuromast, common in other teleost larvae, which includes presumptive canal neuromasts that first appear on the trunk and accessory superficial neuromasts that later appear on the head and trunk. Type III is a very unusual neuromast located just behind the orbit, close to the otic vesicle, with radially oriented hair cells, suggesting that these serve as multiple axes of sensitivity for mechanical stimuli. The behavior of larval eels suggests that the radially oriented neuromasts may act as the sole mechanosensory organ until the ordinary superficial neuromasts develop. The finding that larval eels possess a well-developed mechanosensory system suggests the possibility that they are also capable of perceiving weak environmental mechanical stimuli, like other teleost larvae.  相似文献   
144.
Because Helicobacter pylori (H. pylori) infection is a major cause of gastroduodenal diseases in humans, the eradication of H. pylori using antibiotics is very effective for the treatment of gastroduodenal diseases. However, it has recently been reported that resistance to these antibiotics is developing. In the present study, the antibacterial effect of a Kampo (traditional Japanese medicine) herbal formulation, Hochu-ekki-to (RET; Formula repletionis animalis et supletionis medii), against H. pylori was examined in vitro and in vivo. HET inhibited the growth of antibiotic-resistant strains of H. pylori as well as antibiotic-sensitive strains at a dose of 2.5 mg/ml in vitro. When 1,000 mg/kg of HET was administered orally to C57BL/6 mice for 7 days before or after inoculation with H. pylori, H. pylori in the stomach was significantly reduced in the HET-pre-treatment group compared with the control group. Furthermore, HET in combination with antibiotics completely eradicated the bacteria in mice. The expression of interferon (IFN)-gamma was induced in the gastric mucosa of the mice pre-treated with HET. There were no significant differences between the colonization of H. pylori in the control and HET treatment groups in IFN-gamma gene-deficient mice. These results suggest that the antibacterial effect of HET may be partly due to IFN-gamma induction, and that HET may be clinically useful for treatment of H. pylori infection.  相似文献   
145.
Protein kinase C-associated kinase (PKK) is a recently described kinase of unknown function that was identified on the basis of its specific interaction with PKC beta. PKK contains N-terminal kinase and C-terminal ankyrin repeats domains linked to an intermediate region. Here we report that the kinase domain of PKK is highly homologous to that of two mediators of nuclear factor-kappa B (NF-kappa B) activation, RICK and RIP, but these related kinases have different C-terminal domains for binding to upstream factors. We find that expression of PKK, like RICK and RIP, induces NF-kappa B activation. Mutational analysis revealed that the kinase domain of PKK is essential for NF-kappa B activation, whereas replacement of serine residues in the putative activation loop did not affect the ability of PKK to activate NF-kappa B. A catalytic inactive PKK mutant inhibited NF-kappa B activation induced by phorbol ester and Ca(2+)-ionophore, but it did not block that mediated by tumor necrosis factor alpha, interleukin-1 beta, or Nod1. Inhibition of NF-kappa B activation by dominant negative PKK was reverted by co-expression of PKC beta I, suggesting a functional association between PKK and PKC beta I. PKK-mediated NF-kappa B activation required IKK alpha and IKK beta but not IKK gamma, the regulatory subunit of the IKK complex. Moreover, NF-kappa B activation induced by PKK was not inhibited by dominant negative Bimp1 and proceeded in the absence of Bcl10, two components of a recently described PKC signaling pathway. These results suggest that PKK is a member of the RICK/RIP family of kinases, which is involved in a PKC-activated NF-kappa B signaling pathway that is independent of Bcl10 and IKK gamma.  相似文献   
146.
We report that the intraperitoneal injection of Clostridium perfringens alpha-toxin into mice induces ascites. This phenomenon was monitored by measuring fluid volume and analyzing hematologic data. The mouse toxicity test provides a simple and useful model for examining C. perfringens alpha-toxin-induced vascular permeability.  相似文献   
147.
L-Kynurenine and quinolinic acid are neuroactive L-tryptophan-kynurenine pathway metabolites of potential importance in pathogenesis and treatment of neurologic disease. To identify precursors of these metabolites in brain, [(2)H(3) ]-L-kynurenine was infused subcutaneously by osmotic pump into three groups of gerbils: controls, CNS-localized immune-activated, and systemically immune-activated. The specific activity of L-kynurenine and quinolinate in blood, brain and systemic tissues at equilibrium was then quantified by mass spectrometry and the results applied to a model of metabolism to differentiate the relative contributions of various metabolic precursors. In control gerbils, 22% of L-kynurenine in brain was derived via local synthesis from L-tryptophan/formylkynurenine versus 78% from L-kynurenine from blood. Quinolinate in brain was derived from several sources, including: local tissue L-tryptophan/formylkynurenine (10%), blood L-kynurenine (35%), blood 3-hydroxykynurenine/3-hydroxyanthranilate (7%), and blood quinolinate (48%). After systemic immune-activation, however, L-kynurenine in brain was derived exclusively from blood, whereas quinolinate in brain was derived from three sources: blood L-kynurenine (52%), blood 3-hydroxykynurenine or 3-hydroxyanthranilate (8%), and blood quinolinate (40%). During CNS-localized immune activation, > 98% of both L-kynurenine and quinolinate were derived via local synthesis in brain. Thus, immune activation and its site determine the sources from which L-kynurenine and quinolinate are synthesized in brain. Successful therapeutic modulation of their concentrations must take into account the metabolic and compartment sources.  相似文献   
148.
While it has been reported that familial Alzheimer's disease (FAD)-linked mutants of amyloid precursor protein (APP) and presenilin (PS)2 induce neuronal cytotoxicity in a manner sensitive to antioxidant and pertussis toxin (PTX), little of the mechanism for PS1-mediated neuronal cell death has been characterized. We previously found that multiple mechanisms, different in detail, underlie cytotoxicities by two FAD-linked mutants of APP, using neuronal cells with an ecdysone-controlled expression system. Here we report that this system revealed that (i) low expression of FAD-linked M146L-PS1 caused neuronal cell death, whereas that of wild-type (wt)PS1 did not; (ii) mutation-specific cytotoxicity by M146L-PS1 was sensitive to antioxidant glutathione-ethyl-ester and resistant to Ac-DEVD-CHO; (iii) cytotoxicity by higher expression of wtPS1 was resistant to both; and (iv) cytotoxicity by M146L-PS1 was inhibited by PTX. It was also highly likely that the involved superoxide-generating enzyme was nitric oxide synthase (NOS), and that the PTX-sensitive cytotoxic signal by M146L-PS1 was mediated by none of the G(i/o) proteins. We conclude that M146L-PS1 activates a NOS-mediated cytotoxic pathway via a novel PTX target.  相似文献   
149.
The protease-activated receptor-2 (PAR-2), a G protein-coupled receptor activated by trypsin, contributes to the pathogenesis of inflammatory disease including asthma. Here, we examined the mechanisms by which stimulation of PAR-2 induces an increase in intracellular Ca2+ concentration ([Ca2+]i) in guinea pig tracheal epithelial cells. Trypsin (0.01-3 units/ml) dose-dependently induced a transient increase in [Ca2+]i, the increase being blocked by soybean trypsin inhibitor (SBTI 1 microM). An increase in [Ca2+]i was also induced by an agonist peptide for PAR-2 (SLIGRL-NH2, 0.001-10 microM) but not by thrombin (3 units/ml, an activator for PAR-1, PAR-3 or PAR-4). Repeated or cross stimulation of trypsin or SLIGRL-NH2 caused marked desensitization of the [Ca2+]i response. These responses of [Ca2+]i to trypsin and SLIGRL-NH2 were attenuated by a phospholipase C inhibitor, U-73122, and a Ca2+-ATPase inhibitor, thapsigargin (100 nM), while removal of Ca2+ and a L-type Ca2+-channel blocker, verapamil, were without significant effects. Further, trypsin was without effect on the rate of fura 2 quenching by Mn2+ entry as an indicator of Ca2+ influx. Thus, stimulation of PAR-2 appears to increase [Ca2+]i through the mobilization of Ca2+ from intracellular stores probably via phospholipase Cbeta-linked generation of a second messenger.  相似文献   
150.
Ubiquinone (UQ) (coenzyme Q) is a lipophilic redox-active molecule that functions as an electron carrier in the mitochondrial electron transport chain. Electron transfer via UQ involves the formation of semiubiquinone radicals, which causes the generation of superoxide radicals upon reaction with oxygen. In the reduced form, UQ functions as a lipid-soluble antioxidant, and protects cells from lipid peroxidation. Thus, UQ is also important as a lipophilic regulator of oxidative stress. Recently, a study on long-lived clk-1 mutants of Caenorhabditis elegans demonstrated that biosynthesis of UQ is dramatically altered in mutant mitochondria. Demethoxy ubiquinone (DMQ), that accumulates in clk-1 mutants in place of UQ, may contribute to the extension of life span. Here we elucidate the possible mechanisms of life span extension in clk-1 mutants, with particular emphasis on the electrochemical property of DMQ. Recent findings on the biochemical function of CLK-1 are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号