首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129329篇
  免费   3258篇
  国内免费   3591篇
  2024年   56篇
  2023年   438篇
  2022年   714篇
  2021年   2123篇
  2020年   1356篇
  2019年   1713篇
  2018年   13148篇
  2017年   11518篇
  2016年   8845篇
  2015年   2966篇
  2014年   3105篇
  2013年   3357篇
  2012年   7651篇
  2011年   15648篇
  2010年   13704篇
  2009年   9671篇
  2008年   11582篇
  2007年   12917篇
  2006年   1833篇
  2005年   1769篇
  2004年   2003篇
  2003年   1917篇
  2002年   1528篇
  2001年   916篇
  2000年   746篇
  1999年   651篇
  1998年   358篇
  1997年   385篇
  1996年   354篇
  1995年   316篇
  1994年   338篇
  1993年   292篇
  1992年   331篇
  1991年   279篇
  1990年   220篇
  1989年   196篇
  1988年   144篇
  1987年   114篇
  1986年   92篇
  1985年   86篇
  1984年   66篇
  1983年   70篇
  1982年   36篇
  1979年   11篇
  1972年   246篇
  1971年   274篇
  1965年   14篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
LIVIN, a member of the inhibitor of apoptosis proteins (IAPs), is reported playing important roles in the development and progression of multiple human cancers. However, its underlined mechanisms in human renal cell carcinoma (RCC) are still needed to be clarified. In the present study, we reported that inhibition of miR-214 promoted the expression of LIVIN, then facilitated RCC cells growth and reduced the sensitivity of RCC cells to chemotherapeutic drugs. In constant, overexpression of miR-214 had contradictory effects. Further investigation showed that miR-214 was down-regulated in RCC because of abnormal methylation. In addition, DNA methyltransferase DNMT1, miR-214 and LIVIN are directly correlated in RCC patients. In conclusion, these results suggest that abnormal miR-214 methylation negatively regulates LIVIN, which may promote RCC cells growth and reduced the sensitivity of RCC cells to chemotherapeutic drugs.  相似文献   
963.
Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4‐Amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a novel all‐trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB‐targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK‐glycolysis signalling axis. Further studies should focus on the underlying leukaemia‐promoting mechanisms and investigate LDHB as a therapeutic target.  相似文献   
964.
965.
High‐fat diet (HFD) is a well‐known risk factor for gut microbiota dysbiosis and colorectal cancer (CRC). However, evidence relating HFD, gut microbiota and carcinogenesis is limited. Our study aimed to demonstrate that HFD‐induced gut dysbiosis promoted intestinal adenoma‐adenocarcinoma sequence. In clinical study, we found that HFD increased the incidence of advanced colorectal neoplasia (AN). The expression of monocyte chemoattractant protein 1 (MCP‐1), CC chemokine receptor 2 (CCR2) and CD163 in CRC patients with HFD was significantly higher than that in CRC patients with normal diet. When it comes to the Apcmin/+ mice, HFD consumption could induce gut dysbiosis and promote intestinal carcinogenesis, accompanying with activation of MCP‐1/CCR2 axis that recruited and polarized M2 tumour‐associated macrophages. Interestingly, transfer of faecal microbiota from HFD‐fed mice to another batch of Apcmin/+ mice in the absence of HFD could also enhance carcinogenesis without significant body weight gain and induced MCP‐1/CCR2 axis activation. HFD‐induced dysbiosis could also be transmitted. Meanwhile, antibiotics cocktail treatment was sufficient to inhibit HFD‐induced carcinogenesis, indicating the vital role of dysbiosis in cancer development. Conclusively, these data indicated that HFD‐induced dysbiosis accelerated intestinal adenoma‐adenocarcinoma sequence through activation of MCP‐1/CCR2 axis, which would provide new insight into better understanding of the mechanisms and prevention for HFD‐related CRC.  相似文献   
966.
In this study, we investigated the effects of isorhamnetin on myocardial ischaemia reperfusion (I/R) injury in Langendorff-perfused rat hearts. Isorhamnetin treatment (5, 10 and 20 μg/mL) significantly alleviated cardiac morphological injury, reduced myocardial infarct size, decreased the levels of marker enzymes (LDH and CK) and improved the haemodynamic parameters, reflected by the elevated levels of the left ventricular developed pressure (LVDP), coronary flow (CF) and the maximum up/down velocity of left ventricular pressure (+dp/dtmax). Moreover, isorhamnetin reperfusion inhibited apoptosis of cardiomyocytes in the rats subjected to cardiac I/R in a dose-dependent manner concomitant with decreased protein expression of Bax and cleaved-caspase-3, as well as increased protein expression of Bcl-2. In addition, I/R-induced oxidative stress was manifestly mitigated by isorhamnetin treatment, as showed by the decreased malondialdehyde (MDA) level and increased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). These results indicated that isorhamnetin exerts a protective effect against I/R-induced myocardial injury through the attenuation of apoptosis and oxidative stress.  相似文献   
967.
Although the diagnosis and therapy approach developed, techniques for the early diagnosis of HCC remain insufficient which results in poor prognosis of patients. The traditional biomarker AFP, however, has been proved with low specificity. Circulating exosomal ncRNAs revealed different profiles reflecting the characteristics of tumour. In this study, we mainly focused on circulating exosomal ncRNAs which might be the fingerprint for HCC, especially for the diagnosis or metastasis prediction. A high throughput lncRNA microarray in exosomes extracted from cell‐free plasma was applied. The risk score analysis was employed to screen the potential exosome‐derived lncRNAs in two independent sets based on different clinical parameters in 200 paired HCC patients. After a multi‐stage validation, we finally revealed three lncRNAs, ENSG00000248932.1, ENST00000440688.1 and ENST00000457302.2, increased in HCC comparing with the both chronic hepatitis (CH) patients and cancer‐free controls. ROC curve revealed a higher sensitivity and specificity in predicting the occurrence of HCC from cancer‐free controls and CH patients with the area under curve (AUC) of 0.905 and 0.879 by combining AFP. The three lncRNA panel combined with AFP also indicted a fingerprint function in predicting the metastasis of HCC with the AUC of 0.870. In conclusion, ENSG00000248932.1, ENST00000440688.1 and ENST00000457302.2 might be the potential biomarker for the tumorigenesis prediction from CH patients or healthy controls and may also be applied for dynamic monitoring the metastasis of HCC.  相似文献   
968.
Two new abietane diterpenoids, (3S,5R,10S)‐3‐hydroxy‐12‐O‐demethyl‐11‐deoxy‐19(4→3)‐abeo‐cryptojaponol, 12,19‐dihydroxyabieta‐8,11,13‐trien‐7‐one, were isolated from Selaginella moellendorffii Hieron., together with one known abietane diterpenoid and four known tetracyclic triterpenoids. Their structures were characterized by their 1D‐ and 2D‐NMR, ECD and mass spectral studies. All compounds were tested for their inhibitory effects on proliferation of three human cancer cells (human non‐small‐cell lung carcinoma cell lines A549 and human breast adenocarcinoma cell lines MDA‐MB‐231 and MCF‐7) in vitro. Among them, three compounds displayed modest cytotoxic activities against the above three human cancer cell lines with IC50 values ranging from 16.28 to 40.67 μM.  相似文献   
969.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
970.
Transition metal sulfides hold promising potentials as Li‐free conversion‐type cathode materials for high energy density lithium metal batteries. However, the practical deployment of these materials is hampered by their poor rate capability and short cycling life. In this work, the authors take the advantage of hollow structure of CuS nanoboxes to accommodate the volume expansion and facilitate the ion diffusion during discharge–charge processes. As a result, the hollow CuS nanoboxes achieve excellent rate performance (≈371 mAh g?1 at 20 C) and ultra‐long cycle life (>1000 cycles). The structure and valence evolution of the CuS nanobox cathode are identified by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Furthermore, the lithium storage mechanism is revealed by galvanostatic intermittent titration technique and operando Raman spectroscopy for the initial charge–discharge process and the following reversible processes. These results suggest that the hollow CuS nanobox material is a promising candidate as a low‐cost Li‐free cathode material for high‐rate and long‐life lithium metal batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号