首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   14篇
  国内免费   9篇
  2023年   7篇
  2022年   8篇
  2021年   10篇
  2020年   8篇
  2019年   15篇
  2018年   3篇
  2017年   8篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   13篇
  2012年   12篇
  2011年   16篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1972年   2篇
排序方式: 共有188条查询结果,搜索用时 769 毫秒
71.
Calcium-dependent protein kinases (CDPKs) sense the calcium concentration changes in plant cells and play important roles in signaling pathways for disease resistance and various stress responses as indicated by emerging evidences. Among the 20 wheat CDPK genes studied, 10 were found to respond to drought, salinity and ABA treatments. Consistent with previous observations, one CDPK gene was shown to respond to multiple abiotic stresses in wheat suggesting that CDPKs could be converging points for multiple signaling pathways. Among the 12 wheat CDPK genes that were responsive to Blumeria graminis tritici (Bgt) infection or the treatment of hydrogen peroxide (H2O2), eight also responded to abiotic stresses, suggesting a cross-talk between biotic and abiotic stress signaling pathways. Phylogenetic analysis indicated that some of these genes were closely related to CDPKs from other species, whose functions have been partially studied, suggesting similar functions wheat CDPK genes. Combining the up-to-date knowledge of CDPK functions and our observations, a model was developed to project the possible roles of wheat CDPK genes in the signaling of biotic and abiotic stress responses.Key words: CDPK, calcium, kinase, stress response, disease resistance, signal transduction, wheatSessile plants have developed sophisticated signaling pathways to deal with dramatic environmental changes that may affect their normal growth, such as pathogen attack, drought, and cold. Calcium is a universal secondary messenger that responds to these stimuli. The fluctuation in cytosolic Ca2+ levels can be sensed by calcium-dependent protein kinases (CDPKs), which will modify the phosphorylation status of substrate proteins.13 Accumulating evidence indicate that CDPKs mediate biotic and abiotic stress signaling pathways.47 For example, overexpression of the rice CDPK gene OsCDPK7 provides cold, salt, and drought tolerance for the transgenic rice plants, demonstrating the potential of CDPK engineering to generate stress tolerance enhanced crops.8,9In wheat, 10 out of 14 CDPK genes appeared to respond to abiotic stresses including drought, NaCl, as well as ABA stimulus (Fig. 1A).10 Five CDPKs (TaCPK4, 6, 9, 10 and 18) were particularly interesting since they could respond to at least two of the three treatments, among which the expression level of TaCPK9 was enhanced under all three treatments suggesting that TaCPK9 is the point where multiple signaling pathways cross. In wheat, TaCPK4 responded to both ABA treatment and NaCl stress (Fig. 1A). Interestingly, its best Arabidopsis homologs AtCPK4 and AtCPK11, as suggested by a Neighbor-Joining phylogenetic analysis (Fig. 1B), have been postulated as two important positive regulators in CDPK/calcium-mediated ABA signaling pathways.11 Such a correlation strongly supports the idea that TaCPK4 is a good candidate in wheat for ABA signaling. Figure 1A also shows that one wheat CDPK gene could respond to multiple abiotic stresses suggesting that CDPKs are converging points for multiple signaling pathways. On the other hand, multiple CDPKs were involved in single stress response. It is however not clear how these CDPKs are organized in one signaling pathway.Open in a separate windowFigure 1The roles of wheat CDPKs in abiotic and biotic stress responses. (A) One CDPK gene responded to multiple abiotic stresses and multiple CDPKs were required for single stress response. (B) Phylogenetic relationship of wheat CDPKs with functionally studied CDPKs from barley (HvCPKs), Arabidopsis (AtCPKs), and potato (StCDPKs) that are known to be involved in ABA signaling, oxidative burst regulation and defense to powdery mildew pathogenesis. (C) A model depicting CDPK-mediated signaling pathways under biotic and abiotic treatments in wheat (see text for details). Dotted lines with a question mark indicate unknown intermediate steps.Regarding the roles of CDPKs in defense reactions, 12 TaCPKs were found to be responsive to either Blumeria graminis tritici (Bgt) infection or H2O2 treatment. The response to H2O2 was investigated because cytosolic calcium influx and reactive oxygen species, such as H2O2 are known to be implicated in both plant innate immunity and abiotic stresses.1217 Among these CDPK genes, five responded to both treatments (Group II) whereas the ones that responded to Bgt infection (Group I) or H2O2 treatment (Group III) were four and three respectively. The differential expression patterns suggest different functional modes of these CDPK genes. Involvement of CDPK genes in plant defense response has been shown in multiple species.5,7 Recently, two barley CDPK paralogs (HvCDPK3 and HvCDPK4) were found to play antagonistic roles during the early phase of powdery mildew pathogenesis.5 The close similarity between wheat CDPK genes (TaCPK2 and TaCPK5, Fig. 1B) with these two barley genes may suggest their potential roles in wheat powdery mildew resistance. Surprisingly, we did not detect the responsiveness of TaCPK5 to wheat Bgt infection, indicating the divergence of CDPK functions in these two members of Triticeae family. Recently, one potato (Solanum tuberosum) CDPK gene StCDPK5 has been shown to be directly involved in regulating oxidative burst via phosphorylation of the NADPH oxidase StRBOHB.18 In light of the close relationship of TaCPK2 with HvCDPK5 and StCDPK5 (Fig. 1B), we speculate that TaCPK2 could be associated with both biotic and abiotic stress response signaling pathways and therefore play multiple roles in wheat.A model was proposed in Figure 1C regarding the positions of wheat CDPK genes in signaling pathways for biotic and abiotic responses. The hypothesis depicted four different roles of wheat CDPK genes: (1) Group I genes that respond only to Bgt infection may, like potato StCDPK5, render defense response through an oxidase like NADPH oxidase that generates increased amount of H2O2;18 (2) At one aspect, Group II genes may participate in defense response in a manner similar to Group I genes; (3) On the other hand, since Group II genes also respond to H2O2 treatment directly, an auto-regulation circuit was proposed, which eventually joins the oxidase pathway; (4) Group III CDPK genes and some remaining CDPK genes are considered to be mainly involved in abiotic stress responses. The model positioned CDPKs both upstream and downstream of H2O2, presenting a complicated wiring of the signaling pathway network involving wheat CDPKs. Future biochemical, genetic, and transgenic analyses may help elucidate the genuineness of such a rather early model for the functions of wheat CDPK genes.  相似文献   
72.
Wang Y  Hong J  Liu X  Yang H  Liu R  Wu J  Wang A  Lin D  Lai R 《PloS one》2008,3(9):e3217

Background

Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules of innate immunity, which are firstly found in mammalians. Recently, several cathelicidins have also been found from chickens and fishes. No cathelicidins from other non-mammalian vertebrates have been reported.

Principal Findings

In this work, a cathelicidin-like antimicrobial peptide named cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and its cDNA sequence was cloned from the cDNA library, which confirm the presence of cathelicidin in reptiles. As other cathelicidins, the precursor of cathelicidin-BF has cathelin-like domain at the N terminus and carry the mature cathelicidin-BF at the C terminus, but it has an atypical acidic fragment insertion between the cathelin-like domain and the C-terminus. The acidic fragment is similar to acidic domains of amphibian antimicrobial precursors. Phylogenetic analysis revealed that the snake cathelicidin had the nearest evolution relationship with platypus cathelicidin. The secondary structure of cathelicidin-BF investigated by CD and NMR spectroscopy in the presence of the helicogenic solvent TFE is an amphipathic α-helical conformation as many other cathelicidins. The antimicrobial activities of cathelicidin BF against forty strains of microorganisms were tested. Cathelicidin-BF efficiently killed bacteria and some fungal species including clinically isolated drug-resistance microorganisms. It was especially active against Gram-negative bacteria. Furthermore, it could exert antimicrobial activity against some saprophytic fungus. No hemolytic and cytotoxic activity was observed at the dose of up to 400 µg/ml. Cathelicidin-BF could exist stably in the mice plasma for at least 2.5 hours.

Conclusion

Discovery of snake cathelicidin with atypical structural and functional characterization offers new insights on the evolution of cathelicidins. Potent, broad spectrum, salt-independent antimicrobial activities make cathelicidin-BF an excellent candidate for clinical or agricultural antibiotics.  相似文献   
73.
提高PCR产物的几种有效方法   总被引:10,自引:0,他引:10  
结合作者的工作实际 ,着重介绍了有效提高PCR产物的几种方法 :如怎样高效快速地设计PCR引物 ,怎样尽快确定PCR反应的最适退火温度 ,如何提高GC富集区的扩增效率等 ,为分子生物学工作者提供一些可以借鉴的方法及经验。  相似文献   
74.
75.
Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.  相似文献   
76.
77.
78.
79.
80.
Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号