首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1118篇
  免费   92篇
  2021年   13篇
  2020年   9篇
  2019年   11篇
  2018年   14篇
  2017年   14篇
  2016年   24篇
  2015年   37篇
  2014年   45篇
  2013年   81篇
  2012年   74篇
  2011年   61篇
  2010年   51篇
  2009年   29篇
  2008年   67篇
  2007年   67篇
  2006年   65篇
  2005年   59篇
  2004年   61篇
  2003年   50篇
  2002年   48篇
  2001年   16篇
  2000年   31篇
  1999年   19篇
  1998年   13篇
  1997年   9篇
  1996年   14篇
  1995年   9篇
  1994年   5篇
  1993年   8篇
  1992年   17篇
  1991年   16篇
  1990年   11篇
  1989年   18篇
  1988年   10篇
  1987年   8篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   9篇
  1982年   6篇
  1980年   8篇
  1979年   11篇
  1976年   4篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
  1970年   5篇
  1969年   3篇
  1967年   5篇
  1966年   3篇
排序方式: 共有1210条查询结果,搜索用时 62 毫秒
91.
We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A) but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of , which is then converted by SOD to H2O2, and subsequent Akt activation by H2O2 attenuates apoptosis in ischemia-reperfusion.  相似文献   
92.
We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.  相似文献   
93.
In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.  相似文献   
94.
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bauhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH2 (RGE) and IVYYPDRGETGL-NH2 (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED50 0.16% and LD50 0.09%), this being even more effective than the native protein.  相似文献   
95.
Calmodulin in Schizosaccharomyces pombe is encoded by the cam1+ gene, which is indispensable for both vegetative growth and sporulation. Here, we report how Cam1 functions in spore formation. We found that Cam1 preferentially localized to the spindle pole body (SPB) during meiosis and sporulation. Formation of the forespore membrane, a precursor of the plasma membrane in spores, was blocked in a missense cam1 mutant, which was viable but unable to sporulate. Three SPB proteins necessary for the onset of forespore membrane formation, Spo2, Spo13, and Spo15, were unable to localize to the SPB in the cam1 mutant although five core SPB components that were tested were present. Recruitment of Spo2 and Spo13 is known to require the presence of Spo15 in the SPB. Notably, Spo15 was unstable in the cam1 mutant, and as a result, SPB localization of Spo2 and Spo13 was lost. Overexpression of Spo15 partially alleviated the sporulation defect in the cam1 mutant. These results indicate that calmodulin plays an essential role in forespore membrane formation by stably maintaining Spo15, and thus Spo2 and Spo13, at the SPB in meiotic cells.Calmodulin is a calcium-binding protein that is ubiquitously distributed and highly conserved among eukaryotes. It contains four EF-hand Ca2+-binding sites, which are required for function. Calmodulin controls a variety of cellular processes mostly related to calcium signaling. When bound to calcium, calmodulin undergoes a characteristic conformational change to an active configuration. Activated calmodulin then binds effector proteins and transmits the signal to downstream regulators.Yeast is a genetically tractable model organism suitable for studying the biological function of calmodulin, using conditional-lethal calmodulin mutants (4). In the budding yeast Saccharomyces cerevisiae, calmodulin is encoded by the CMD1 gene (5). Cmd1p is implicated in a wide variety of cellular processes, including initiation of budding and mitotic spindle formation (24). The fission yeast Schizosaccharomyces pombe has a typical calmodulin encoded by the cam1+ gene, which plays an indispensable role in cell proliferation, dependent on its Ca2+-binding activity (18, 19, 30). A green fluorescent protein (GFP)-Cam1 fusion protein localizes to sites of polarized cell growth and to the spindle pole body (SPB) in vegetative cells (19). Thus, an essential role of Cam1 might be its regulatory function in chromosome segregation (19). The role of calmodulin in the sexual cycle has been documented to a lesser extent in previous studies. A missense mutant, cam1-117, in which the Arg117 codon is changed to a Phe codon, exhibits reduced sporulation efficacy (29), suggesting that calmodulin plays a role in sporulation in fission yeast.Spore formation in fission yeast initiates with assembly of the forespore membrane (FSM), composed of double-unit membranes within the cytoplasm of a diploid zygote cell (10, 27, 28, 34). The FSM expands to encapsulate each haploid nucleus generated by meiosis and then forms a nucleated prespore. The inner bilayer of the FSM subsequently becomes the plasma membrane of the newborn spores. During meiosis II, the SPB undergoes morphological alteration from a compact single plaque to a multilayered expanded structure (10). Such modification of the SPB is a prerequisite for FSM assembly, which occurs close to the outermost layer of the modified SPB (9, 10, 20, 21).Three SPB component proteins, Spo2, Spo13, and Spo15, have been identified as essential for SPB modification and formation of the FSM (11, 23). Spo15, a large coiled-coil protein, is associated with the SPB throughout the life cycle and is indispensable for recruitment of Spo2 and Spo13 to the cytoplasmic surface of the meiotic SPB. The latter two proteins are produced only during meiosis (23). These observations imply that the SPB serves as a platform for assembly of the FSM. Cam1 has been reported to localize to the SPB during vegetative growth (19), raising the intriguing possibility that fission yeast calmodulin is involved in sporulation through proper construction of a modified meiotic SPB. To test this possibility, we report herein a detailed analysis of Cam1 localization during meiosis and the consequence of a missense mutation of cam1 on SPB modification and FSM formation.  相似文献   
96.
Gross and microscopic features closely resembling those found in Menetrier's disease in man are described in a 20-month-old rhesus monkey. The gastric lining was characterized by greatly enlarged rugae caused by mucosal hypertrophy and hyperplasia along with outfolding of the muscularis mucosa and the submucosa. The mucosa and submucosa were infiltrated with inflammatory cells, mainly lymphocytes and plasma cells.  相似文献   
97.
Necropsy of a 15-month-old male orangutan (Pongo pygmaeus) showed multiple nodular elevations of the mucosa of the colon, petechial hemorrhages in both lungs, and mucosal ulcerations in the cecum, appendix, and proximal colon. Light microscopy revealed filariform larvae of Strongyloides in the lung, colon, and mesenteric lymph nodes. Rhabditiform larvae were also observed in sections of colon.  相似文献   
98.
99.
X rays are well known to cause genetic damage and to induce many types of carcinomas in humans. The Apc(min/+) mouse, an animal model for human familial adenomatous polyposis (FAP), contains a truncating mutation in the APC gene and spontaneously develops intestinal adenomas. To elucidate the role of X rays in the development of intestinal tumors, we examined the promotion of carcinogenesis in X-irradiated Apc(min/+) mice. Forty out of 77 (52%) X-irradiated Apc(min/+) mice developed adenocarcinomas that invaded the proprial muscle layer of the small intestine; 24 of 44 (55%) were in males, and 16 of 33 (49%) were in females. In contrast, invasive carcinomas were detected in the small intestines of only 13 of 64 (20%) nonirradiated Apc(min/+) mice; nine of 32 (28%) were in males and four of 32 (13%) were in females. These differences between X-irradiated and nonirradiated Apc(min/+) mice in the occurrence of invasive intestinal carcinomas were statistically significant (P < 0.05 for males, P < 0.005 for females). In wild-type mice, invasive carcinomas were not detected in either X-irradiated or nonirradiated mice. Apc(min/+) mice had many polyps in the large intestine with or without X irradiation; there was no difference in the number of polyps between the two groups. Also, invasive carcinomas were not detected in the large intestine with or without irradiation. The occurrence of mammary tumors, which was observed in Apc(min/+) mice, was found to be increased in irradiated Apc(min/+) mice (P < 0.01). Apc(min/+) mice had many polyps in the small and large intestines with or without X irradiation. X-irradiated Apc(min/+) mice had highly invasive carcinomas in the small intestine with multiplicities associated with invasiveness. Our results suggest that X radiation may promote the invasive activity of intestinal tumors in Apc(min/+) mice.  相似文献   
100.
We previously reported the protection from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) by the adoptive transfer of genetically modified embryonic stem cell-derived dendritic cells (ES-DC) presenting MOG peptide in the context of MHC class II molecules and simultaneously expressing TRAIL (ES-DC-TRAIL/MOG). In the present study, we found the severity of EAE induced by another myelin autoantigen, myelin basic protein, was also decreased after treatment with ES-DC-TRAIL/MOG. This preventive effect diminished, if the function of CD4(+)CD25(+) regulatory T cells (Treg) was abrogated by the injection of anti-CD25 mAb into mice before treatment with ES-DC-TRAIL/MOG. The adoptive transfer of CD4(+)CD25(+) T cells from ES-DC-TRAIL/MOG-treated mice protected the recipient mice from MOG- or myelin basic protein-induced EAE. The number of Foxp3(+) cells increased in the spinal cords of mice treated with ES-DC-TRAIL/MOG. In vitro experiments showed that TRAIL expressed in genetically modified ES-DC and also in LPS-stimulated splenic macrophages had a capacity to augment the proliferation of CD4(+)CD25(+) T cells. These results suggest that the prevention of EAE by treatment with ES-DC-TRAIL/MOG is mediated, at least in part, by MOG-reactive CD4(+)CD25(+) Treg propagated by ES-DC-TRAIL/MOG. For the treatment of organ-specific autoimmune diseases, induction of Treg reactive to the organ-specific autoantigens by the transfer of DC-presenting Ags and simultaneously overexpressing TRAIL therefore appears to be a promising strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号