首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1889篇
  免费   165篇
  国内免费   191篇
  2024年   2篇
  2023年   13篇
  2022年   27篇
  2021年   70篇
  2020年   72篇
  2019年   82篇
  2018年   91篇
  2017年   58篇
  2016年   97篇
  2015年   112篇
  2014年   138篇
  2013年   152篇
  2012年   192篇
  2011年   159篇
  2010年   96篇
  2009年   83篇
  2008年   96篇
  2007年   90篇
  2006年   82篇
  2005年   70篇
  2004年   93篇
  2003年   76篇
  2002年   67篇
  2001年   52篇
  2000年   42篇
  1999年   30篇
  1998年   19篇
  1997年   14篇
  1996年   13篇
  1995年   9篇
  1994年   11篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1980年   1篇
  1950年   2篇
排序方式: 共有2245条查询结果,搜索用时 390 毫秒
41.
Since spermatogonial stem cells (SSCs) are capable of both self-renewal and differentiation to daughter cells for subsequent spermatogenesis, the development of an efficient in vitro culture system is essential for studies related to spermatogenesis. Although the currently available system is serum-free and contains only chemically-defined components, it highly relies upon bovine serum albumin (BSA), a component with batch-to-batch quality variations similar to those of fetal bovine serum. Thus, we searched for an alternative BSA-free culture system that preserved the properties of SSCs. In this study, we utilized Knockout Serum Replacement (KSR) in the SSC culture medium, as a substitute for BSA. The results demonstrated that KSR supported the continuous growth of SSCs in vitro and the SSC activity in vivo without BSA, in a feeder-cell combination with mouse embryonic fibroblasts. The addition of BSA to KSR further facilitated cell cycle progression, whereas a transplantation assay revealed that the addition of BSA did not affect the number of SSCs in vivo. The combination of KSR with BSA also allowed the elimination of GFRA1 and FGF2, and the reduction of the GDNF concentration from 20 ng/ml to 5 ng/ml, while maintaining the growth rate and the expression of SSC markers. Furthermore, KSR was also useful with SSCs from non-DBA/2 strains, such as C57BL/6 and ICR. These results suggested that KSR is an effective substitute for BSA for long-term in vitro cultures of SSCs. Therefore, this method is practical for various studies related to SSCs, including spermatogenesis and germ stem cell biology.  相似文献   
42.

Background

Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites.

Results

The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines.

Conclusions

There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior.  相似文献   
43.
The C-terminus of the putative cell surface protein CspI which contains one putative LPxTG motif region and a signal peptides fragment were amplified from L. plantarum CICC6024, and the green fluorescent protein gene gfp was amplified from the plasmid pACGFP. The three genes were ligated and the fusion gene was named SgfpL. The fusion gene SgfpL was then cloned into shuttle expression vector pMG36e and transformed into L. plantarum. SDS-PAGE identified that the fusion protein was expressed and the band of fusion protein was observed at the predicated molecular size. Fluorescence assay, western blot against GFP antibody, protease accessibility and SDS sensitivity assays were performed to determine that the GFP was successfully displayed on the surfaces of L. plantarum cells and the maximum display capacity of the GFP fusion protein was ca. 65 μg?ml?1. The fermentation condition experiments determined that the amounts of GFP fusion protein were increased at a higher temperature and reached the peak at 2.5 h. Then, the β-galactosidase from Bifidobacterium bifidum was functionally displayed on the surface of L. plantarum cells via CspI to demonstrate the applicability of the CspI-mediated surface display system.  相似文献   
44.
Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs) constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio) and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs). We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs) in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.  相似文献   
45.

Background

There has been no comprehensive study on biochemical characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus. To fill this void in the literature, a nationwide investigation was performed to quantify the enzyme activities, thereby attempting to characterize the potential resistance mechanisms in Cx. quinquefasciatus in residential areas in Malaysia.

Methodology/Principal Findings

Culex quinquefasciatus from 14 residential areas across 13 states and one federal territory were subjected to esterases, mixed function oxidases, glutathione-S-transferase and insensitive acetylcholinesterase assays. Enzyme assays revealed that α-esterases and β-esterases were elevated in 13 populations and 12 populations, respectively. Nine populations demonstrated elevated levels of mixed function oxidases and glutathione-S-transferase. Acetylcholinesterase was insensitive to propoxur in all 14 populations. Activity of α-esterases associated with malathion resistance was found in the present study. In addition, an association between the activity of α-esterases and β-esterases was also demonstrated.

Conclusions/Significance

The present study has characterized the potential biochemical mechanisms in contributing towards insecticide resistance in Cx. quinquefasciatus field populations in Malaysia. Identification of mechanisms underlying the insecticide resistance will be beneficial in developing effective mosquito control programs in Malaysia.  相似文献   
46.
向虹  阳小胡  艾亮霞  潘燕平  胡勇 《遗传》2020,(2):172-182,I0002,I0003
利用生物信息学方法分析脱发相关差异表达基因,有望帮助了解脱发发生发展的分子机制。本研究从NCBI的子数据库GEO中选择基因表达谱GSE45512和GSE45513数据集,利用R语言limma工具包,筛选出两个物种斑秃样本与正常样本的共同显著差异表达基因。对这部分基因进行功能注释和蛋白互作网络分析,同时对全部差异表达基因进行基因集富集分析。结果发现,人头皮斑秃样本共筛选出225个差异表达基因;C3H/HeJ小鼠自发斑秃皮肤样本共筛选出337个差异表达基因;两个物种的共同显著差异表达基因有23个。GO功能富集分析和蛋白互作网络分析显示,这部分差异基因显著富集于免疫相关功能,并且彼此间存在蛋白互作关系。基因集富集分析显示两个物种的差异基因都能显著富集到趋化因子信号通路、细胞因子受体相互作用、金葡菌感染及抗原加工与呈递通路;而且人的下调差异基因不仅映射到了人类表型数据库的脱发表型,也映射到皮肤附属物病理相关表型。综上所述,本研究通过生物信息方法分析脱发皮肤组织与正常皮肤组织的差异表达基因,最终筛选出23个在人和小鼠中共同存在的显著差异表达基因;此外,分析发现脱发与免疫过程及皮肤附属物病变密切相关,这些结果为脱发的诊断和治疗提供了新思路。  相似文献   
47.
Liu  Yuan  Luo  Cong  Zhang  Xiu-Juan  Lu  Xin-Xi  Yu  Hai-Xia  Xie  Xiao-Jie  Fan  Zhi-Yi  Mo  Xiao  He  Xin-Hua 《Plant Cell, Tissue and Organ Culture》2020,143(1):219-228
Plant Cell, Tissue and Organ Culture (PCTOC) - CONSTANS (CO)/CONSTANS-like (COL) genes play an important role in the photoperiodic flowering pathway. However, the functional roles of the CO/COL...  相似文献   
48.

Glioblastoma multiform (GBM) is known as an aggressive glial neoplasm. Recently incorporation of mesenchymal stem cells with anti-tumor drugs have been used due to lack of immunological responses and their easy accessibility. In this study, we have investigated the anti-proliferative and apoptotic activity of atorvastatin (Ator) in combination of mesenchymal stem cells (MSCs) on GBM cells in vitro and in vivo. The MSCs isolated from rats and characterized for their multi-potency features. The anti-proliferative and migration inhibition of Ator and MSCs were evaluated by MTT and scratch migration assays. The annexin/PI percentage and cell cycle arrest of treated C6 cells were evaluated until 72 h incubation. The animal model was established via injection of C6 cells in the brain of rats and subsequent injection of Ator each 3 days and single injection of MSCs until 12 days. The growth rate, migrational phenotype and cell cycle progression of C6 cells decreased and inhibited by the interplay of different factors in the presence of Ator and MSCs. The effect of Ator and MSCs on animal models displayed a significant reduction in tumor size and weight. Furthermore, histopathology evaluation proved low hypercellularity and mitosis index as well as mild invasive tumor cells for perivascular cuffing without pseudopalisading necrosis and small delicate vessels in Ator?+?MSCs condition. In summary, Ator and MSCs delivery to GBM model provides an effective strategy for targeted therapy of brain tumor.

  相似文献   
49.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号