首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3246篇
  免费   227篇
  国内免费   1篇
  2024年   4篇
  2023年   8篇
  2022年   9篇
  2021年   58篇
  2020年   38篇
  2019年   45篇
  2018年   91篇
  2017年   64篇
  2016年   120篇
  2015年   163篇
  2014年   218篇
  2013年   241篇
  2012年   292篇
  2011年   273篇
  2010年   172篇
  2009年   163篇
  2008年   196篇
  2007年   191篇
  2006年   177篇
  2005年   144篇
  2004年   181篇
  2003年   110篇
  2002年   102篇
  2001年   107篇
  2000年   69篇
  1999年   56篇
  1998年   16篇
  1997年   22篇
  1996年   13篇
  1995年   12篇
  1994年   5篇
  1993年   9篇
  1992年   16篇
  1991年   17篇
  1990年   21篇
  1989年   15篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有3474条查询结果,搜索用时 15 毫秒
121.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   
122.
123.
124.
Mechanism of taxol-induced apoptosis in human SKOV3 ovarian carcinoma cells   总被引:4,自引:0,他引:4  
Taxol is extensively used clinically for chemotherapy of patients with ovarian, breast, and lung cancer. Although taxol induces apoptosis of cancer cells, its exact mechanism of action is not yet known. To determine the mechanism of action of taxol in ovarian cancer, we tested the effects of the drug, on the human ovarian carcinoma cell line, SKOV3. We observed that taxol-induced apoptosis of these cells by phosphatidylserine (PS) externalization and DNA fragmentation. While treatment of cells with taxol resulted in bcl-2 phosphorylation and mitochondrial depolarization, cytochrome c was not released and pro-caspase-3 was not activated. Treatment of SKOV3 cells with taxol, however, resulted in the translocation of AIF from the mitochondria to the nucleus via the cytosol. Taken together, these findings suggest that in SKOV3 cells, taxol induces caspase-independent AIF-dependent apoptosis.  相似文献   
125.
Applying proteomics to signaling networks   总被引:3,自引:0,他引:3  
The information from genome sequencing provides a new framework for a systems-wide understanding of protein networks and cellular function. Whereas microarray technologies provide information about global gene expression within cells, complementary proteomic strategies monitor expression of proteins and their posttranslational modifications. Improved technologies that have emerged for comprehensive and high-throughput protein analysis yield novel insights into cell regulation.  相似文献   
126.
127.
Terminal restriction fragment length polymorphism analysis of reverse-transcribed 16S rRNA during periods of community flux was used as a tool to delineate the roles of the members of a 2-bromophenol-degrading, sulfate-reducing consortium. Starved, washed cultures were amended with 2-bromophenol plus sulfate, 2-bromophenol plus hydrogen, phenol plus sulfate, or phenol with no electron acceptor and were monitored for substrate use. In the presence of sulfate, 2-bromophenol and phenol were completely degraded. In the absence of sulfate, 2-bromophenol was dehalogenated and phenol accumulated. Direct terminal restriction fragment length polymorphism fingerprinting of the 16S rRNA in the various subcultures indicated that phylotype 2BP-48 (a Desulfovibrio-like sequence) was responsible for the dehalogenation of 2-bromophenol. A stable coculture was established which contained predominantly 2BP-48 and a second Desulfovibrio-like bacterium (designated BP212 based on terminal restriction fragment length polymorphism fingerprinting) that was capable of dehalogenating 2-bromophenol to phenol. Strain 2BP-48 in the coculture could couple reductive dehalogenation to growth with 2-bromophenol, 2,6-dibromophenol, or 2-iodophenol and lactate or formate as the electron donor. In addition to halophenols, strain 2BP-48 appears to use sulfate, sulfite, and thiosulfate as electron acceptors and is capable of simultaneous sulfidogenesis and reductive dehalogenation in the presence of sulfate.  相似文献   
128.
A monoclonal antibody produced by hydridoma cell line, ATCC HB8209, was used to detect and purify erythropoietin synthesized in a cell-free system. The antibody was raised against the N-terminal 20 residues of erythropoietin. It retained anti-erythropoietin activity in 6 M urea in which most of the cell-free synthesized erythropoietin became soluble and gave an enhanced activity of the antibody.  相似文献   
129.
A high-throughput assay for tau phosphorylation by cdk5/p25 is described. Full-length recombinant tau was used as a substrate in the presence of saturating adenosine triphosphate (ATP). Using PHF-1, an antibody directed specifically against 2 tau phosphorylation epitopes (serine 396 and serine 404), an enzyme-linked immunosorbent assay (ELISA)-based colorimetric assay was formatted in 384-well plates. The assay was validated by measuring kinetic parameters for cdk5/p25 catalysis and known inhibitors. Rate constants for the site-specific phosphorylations at the PHF-1 epitopes were determined and suggested preferential phosphorylation at these sites. The performance of this assay in a high-throughput format was demonstrated and used to identify inhibitors of tau phosphorylation at specific epitopes phosphorylated by cdk5/p25.  相似文献   
130.
Protein interactions between MAP kinases and substrates, activators, and scaffolding proteins are regulated by docking site motifs, one containing basic residues proximal to Leu-X-Leu (DEJL) and a second containing Phe-X-Phe (DEF). Hydrogen exchange mass spectrometry was used to identify regions in MAP kinases protected from solvent by docking motif interactions. Protection by DEJL peptide binding was observed in loops spanning beta7-beta8 and alphaD-alphaE in p38alpha and ERK2. In contrast, protection by DEF binding to ERK2 revealed a distinct hydrophobic pocket for Phe-X-Phe binding formed between the P+1 site, alphaF helix, and the MAP kinase insert. In inactive ERK2, this pocket is occluded by intramolecular interactions with residues in the activation lip. In vitro assays confirm the dependence of Elk1 and nucleoporin binding on ERK2 phosphorylation, and provide a structural basis for preferential involvement of active ERK in substrate binding and nuclear pore protein interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号