首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   864篇
  免费   65篇
  国内免费   3篇
  2021年   14篇
  2019年   12篇
  2018年   11篇
  2017年   10篇
  2016年   14篇
  2015年   10篇
  2014年   28篇
  2013年   28篇
  2012年   46篇
  2011年   40篇
  2010年   30篇
  2009年   27篇
  2008年   20篇
  2007年   32篇
  2006年   23篇
  2005年   16篇
  2004年   26篇
  2003年   26篇
  2002年   22篇
  2001年   21篇
  2000年   20篇
  1999年   22篇
  1998年   14篇
  1997年   13篇
  1996年   9篇
  1995年   13篇
  1994年   11篇
  1993年   17篇
  1992年   12篇
  1991年   13篇
  1990年   19篇
  1989年   9篇
  1988年   14篇
  1987年   20篇
  1986年   10篇
  1984年   10篇
  1983年   14篇
  1982年   10篇
  1981年   11篇
  1979年   17篇
  1978年   10篇
  1976年   10篇
  1975年   11篇
  1974年   11篇
  1973年   16篇
  1972年   9篇
  1971年   14篇
  1970年   16篇
  1969年   10篇
  1967年   9篇
排序方式: 共有932条查询结果,搜索用时 109 毫秒
71.
The 2 Mb domain on chromosome 15q11-q13 that carries the imprinted genes involved in Prader-Willi (PWS) and Angelman (AS) syndromes is under the control of an imprinting center comprising two regulatory regions, the PWS-SRO located around the SNRPN promoter and the AS-SRO located 35 kb upstream. Here we describe the results of an analysis of the epigenetic features of these two sequences and their interaction. The AS-SRO is sensitive to DNase I, and packaged with acetylated histone H4 and methylated histone H3(K4) only on the maternal allele, and this imprinted epigenetic structure is maintained in dividing cells despite the absence of clearcut differential DNA methylation. Genetic analysis shows that the maternal AS-SRO is essential for setting up the DNA methylation state and closed chromatin structure of the neighboring PWS-SRO. In contrast, the PWS-SRO has no influence on the epigenetic features of the AS-SRO. These results suggest a stepwise, unidirectional program in which structural imprinting at the AS-SRO brings about allele-specific repression of the maternal PWS-SRO, thereby preventing regional activation of genes on this allele.  相似文献   
72.
The extremely halophilic bacterium Salinibacter ruber was previously shown to have a high intracellular potassium content, comparable to that of halophilic Archaea of the family Halobacteriaceae. The amino acid composition of its bulk protein showed a high content of acidic amino acids, a low abundance of basic amino acids, a low content of hydrophobic amino acids, and a high abundance of serine. We tested the level of four cytoplasmic enzymatic activities at different KCl and NaCl concentrations. Nicotinamide adenine dinucleotide (NAD)-dependent isocitrate dehydrogenase functioned optimally at 0.5-2 M KCl, with rates of 60% of the optimum value at 3.3 M. NaCl provided less activation: 70% of the optimum rates in KCl were found at 0.2-1.2 M NaCl, and above 3 M NaCl, activity was low. We also detected nicotinamide adenine dinucleotide phosphate (NADP)-dependent isocitrate activity, which remained approximately constant between 0-3.2 M NaCl and increased with increasing KCl concentration. NAD-dependent malate dehydrogenase functioned best in the absence of salt, but rates as high as 25% of the optimal values were measured in 3-3.5 M KCl or NaCl. NAD-dependent glutamate dehydrogenase, assayed by the reductive amination of 2-oxoglutarate, showed low activity in the absence of salt. NaCl was stimulatory with optimum activity at 3-3.5 M. However, no activity was found above 2.5 M KCl. Although the four activities examined all function at high salt concentrations, the behavior of individual enzymes toward salt varied considerably. The results presented show that Salinibacter enzymes are adapted to function in the presence of high salt concentrations.  相似文献   
73.
MDC9 (ADAM9/meltrin gamma) is a widely expressed and catalytically active metalloprotease-disintegrin protein that has been implicated in the ectodomain cleavage of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and as an alpha secretase for the amyloid precursor protein. In this study, we evaluated the expression of MDC9 during development and generated mice lacking MDC9 (mdc9(-/-) mice) to learn more about the function of this protein during development and in adults. During mouse development, MDC9 mRNA is ubiquitously expressed, with particularly high expression levels in the developing mesenchyme, heart and brain. Despite the ubiquitous expression of MDC9, mdc9(-/-) mice appear to develop normally, are viable and fertile, and do not have any major pathological phenotypes compared to wild-type mice. Constitutive and stimulated ectodomain shedding of HB-EGF is comparable in embryonic fibroblasts isolated from mdc9(-/-) and wild-type mice, arguing against an essential role of MDC9 in HB-EGF shedding in these cells. Furthermore, there were no differences in the production of the APP alpha and gamma secretase cleavage product (p3) and of beta- and gamma-secretase cleavage product (A beta) in cultured hippocampal neurons from mdc9(-/-) or wild-type mice, arguing against an essential major role of MDC9 as an alpha-secretase in mice. Further studies, including functional challenges and an evaluation of potential compensation by, or redundancy with, other members of the ADAM family or perhaps even with other molecules will be necessary to uncover physiologically relevant functions for MDC9 in mice.  相似文献   
74.
Zhu N  Ling Y  Lei X  Handratta V  Brodie AM 《Steroids》2003,68(7-8):603-611
Twelve 17-(2'-oxazolyl)- and 17-(2'-thiazolyl)-androsta-5,16-diene derivatives were designed and synthesized from 3 beta-acetoxy-pregna-5,16-dien-20-one (1b) as inhibitors of 17 alpha-hydroxylase-C(17,20)-lyase (P450(17 alpha)). Potent inhibitors of this enzyme could be of value as treatment of prostate cancer. Two substituents (methyl and phenyl) were introduced either at their 4'- or 5'-position in order to investigate their structure-activity relationship. Due to the 16,17-double bond, 17-thiazoles were generally obtained in low yield. The pharmacological results showed that the compounds containing 17-(2'-oxazolyl) (14c) and 17-(2'-thiazolyl) (8c) (41.5%) demonstrated reasonable inhibition against P450(17 alpha). Their 3-acetate (13c and 7c) were less potent than their 3-OH counterparts. The introduction of a phenyl or methyl group generally decreased inhibitory activity. Surprisingly, 17-(5'-methyl-2'-thiazolyl) (12a) was the most potent compound in this series and was almost as potent as L-39, which has good antitumor activity.  相似文献   
75.
A sensitive bioanalytical method for the measurement of dexloxiglumide, a new selective and potent cholecystokinin type-1 (CCK(1)) receptor antagonist, in plasma, is reported. The method is based on reversed-phase liquid chromatography with ultraviolet absorption detection. Samples are extracted under acidic conditions into an organic solvent, and following evaporation, reconstitution and centrifugation stages, the supernatant is injected on to an ODS column with detection at 244 nm. The method has been validated over the concentration range 0.2-20 microgram/ml, 0.2 microgram/ml being the lower limit of quantification. The overall precision and accuracy (expressed as relative error) of the method was less than 6.1 and 2.3%, respectively. Dexloxigulmide was shown to be stable in plasma when stored at -20 degrees C for at least 200 days. The method is suitable for studying the pharmacokinetics of dexloxiglumide in man.  相似文献   
76.
Potential role for ADAM15 in pathological neovascularization in mice   总被引:11,自引:0,他引:11       下载免费PDF全文
ADAM15 (named for a disintegrin and metalloprotease 15, metargidin) is a membrane-anchored glycoprotein that has been implicated in cell-cell or cell-matrix interactions and in the proteolysis of molecules on the cell surface or extracellular matrix. To characterize the potential roles of ADAM15 during development and in adult mice, we analyzed its expression pattern by mRNA in situ hybridization and generated mice carrying a targeted deletion of ADAM15 (adam15(-/-) mice). A high level of expression of ADAM15 was found in vascular cells, the endocardium, hypertrophic cells in developing bone, and specific areas of the hippocampus and cerebellum. However, despite the pronounced expression of ADAM15 in these tissues, no major developmental defects or pathological phenotypes were evident in adam15(-/-) mice. The elevated levels of ADAM15 in endothelial cells prompted an evaluation of its role in neovascularization. In a mouse model for retinopathy of prematurity, adam15(-/-) mice had a major reduction in neovascularization compared to wild-type controls. Furthermore, the size of tumors resulting from implanted B16F0 mouse melanoma cells was significantly smaller in adam15(-/-) mice than in wild-type controls. Since ADAM15 does not appear to be required for developmental angiogenesis or for adult homeostasis, it may represent a novel target for the design of inhibitors of pathological neovascularization.  相似文献   
77.
1. We recently reported that the activation by UDP of rat P2Y6 nucleotide receptors expressed in 1321N1 astrocytoma cells protected them from TNF-induced apoptosis by suppressing activation of caspase 3 and 8. This study aims to characterize the involvement of intracellular signaling pathways, including kinases, involved in the antiapoptotic effect of UDP.2. Cell death was induced in 1321N1 astrocytoma cells permanently expressing the rat P2Y6 receptor by exposure to TNF in the presence of cycloheximide. The apoptotic fraction was analyzed using flow cytometry.3. The activation of P2Y6 receptors by UDP both protected the astrocytes from TNF- induced apoptosis and activated protein kinase C (PKC) isotypes. The phorbol ester PMA also activated PKC and protected the cells from TNF-induced cell death. The - and -isotypes of PKC were both activated in a persistent fashion upon 5-min exposure to either UDP (10 M) or the phorbol ester PMA (100 nM). The PKC isotype was markedly activated upon UDP treatment.4. The addition of PKC inhibitors, GF109203X or Gö6976, partially antagonized the protective effect of UDP and reduced the UDP-induced phosphorylation of extracellular signal-regulated protein kinases (Erk). The inhibitors of Erk, PD98,059 or U0126, antagonized UDP-induced protection.5. The antiapoptotic protein, Akt, was not affected by P2Y6 receptor activation. Incubation of the astrocytes with calcium modifiers, BAPTA-AM or dantrolene, did not affect the UDP-induced protection from apoptosis.6. The addition of phospholipase C (PLC) inhibitors, D609 or U73122, partially antagonized both UDP-induced protection and PKC activation.7. Therefore, it is suggested that P2Y6 receptors in 1321N1 cells, through coupling to PC-PLC and PI-PLC, activate PKC to protect against TNF -induced apoptosis, in which the activation of Erk is involved in part.  相似文献   
78.
We isolated an obligately anaerobic halophilic bacterium from the Dead Sea that grew by respiration of selenate. The isolate, designated strain DSSe-1, was a gram-negative, non-motile rod. It oxidized glycerol or glucose to acetate + CO2 with concomitant reduction of selenate to selenite plus elemental selenium. Other electron acceptors that supported anaerobic growth on glycerol were nitrate and trimethylamine-N-oxide; nitrite, arsenate, fumarate, dimethylsulfoxide, thiosulfate, elemental sulfur, sulfite or sulfate could not serve as electron acceptors. Growth on glycerol in the presence of nitrate occurred over a salinity range from 100 to 240 g/l, with an optimum at 210 g/l. Analysis of the 16S rRNA gene sequence suggests that strain DSSe-1 belongs to the order Halanaerobiales, an order of halophilic anaerobes with a fermentative or homoacetogenic metabolism, in which anaerobic respiratory metabolism has never been documented. The highest 16S rRNA sequence similarity (90%) was found with Acetohalobium arabaticum (X89077). On the basis of physiological properties as well as the relatively low homology of 16S rRNA from strain DSSe-1 with known genera, classification in a new genus within the order Halanaerobiales, family Halobacteroidaceae is warranted. We propose the name Selenihalanaerobacter shriftii. Type strain is strain DSSe-1 (ATCC accession number BAA-73).  相似文献   
79.
Transregulation of the epidermal growth factor receptor (EGFR) by protein kinase C (PKC) serves as a model for heterologous desensitization of receptor tyrosine kinases, but the underlying mechanism remained unknown. By using c-Cbl-induced ubiquitination of EGFR as a marker for transfer from early to late endosomes, we provide evidence that PKC can inhibit this process. In parallel, receptor down-regulation and degradation are significantly reduced. The inhibitory effects of PKC are mediated by a single threonine residue (threonine 654) of EGFR, which serves as a major PKC phosphorylation site. Biochemical and morphological analyses indicate that threonine-phosphorylated EGFR molecules undergo normal internalization, but instead of sorting to lysosomal degradation, they recycle back to the cell surface. In conclusion, by sorting EGFR to the recycling endosome, heterologous desensitization restrains ligand-induced down-regulation of EGFR.  相似文献   
80.
Glycoprotein IIb/IIIa antagonists have been shown to be effective in reducing thrombotic complications prior to high-risk coronary interventions. Some studies have reported improved coronary flow after abciximab in slow or no-reflow phenomenon. We report a case in which abciximab did not clear the thrombotic occlusion or restore artery flow. Further studies are needed into the refractory no-flow phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号