首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   938篇
  免费   77篇
  2023年   3篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   16篇
  2017年   14篇
  2016年   19篇
  2015年   29篇
  2014年   55篇
  2013年   53篇
  2012年   87篇
  2011年   88篇
  2010年   61篇
  2009年   50篇
  2008年   73篇
  2007年   61篇
  2006年   51篇
  2005年   89篇
  2004年   60篇
  2003年   56篇
  2002年   59篇
  2001年   6篇
  2000年   3篇
  1999年   13篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1971年   1篇
排序方式: 共有1015条查询结果,搜索用时 15 毫秒
71.
72.
Nickel is a cofactor for various microbial enzymes, yet as a trace element, its scavenging is challenging. In the case of the pathogen Helicobacter pylori, nickel is essential for the survival in the human stomach, because it is the cofactor of the important virulence factor urease. While nickel transport across the cytoplasmic membrane is accomplished by the nickel permease NixA, the mechanism by which nickel traverses the outer membrane (OM) of this Gram-negative bacterium is unknown. Import of iron-siderophores and cobalamin through the bacterial OM is carried out by specific receptors energized by the TonB/ExbB/ExbD machinery. In this study, we show for the first time that H. pylori utilizes TonB/ExbB/ExbD for nickel uptake in addition to iron acquisition. We have identified the nickel-regulated protein FrpB4, homologous to TonB-dependent proteins, as an OM receptor involved in nickel uptake. We demonstrate that ExbB/ExbD/TonB and FrpB4 deficient bacteria are unable to efficiently scavenge nickel at low pH. This condition mimics those encountered by H. pylori during stomach colonization, under which nickel supply and full urease activity are essential to combat acidity. We anticipate that this nickel scavenging system is not restricted to H. pylori, but will be represented more largely among Gram-negative bacteria.  相似文献   
73.
The aim of this work was to characterize starch polysaccharides using asymmetrical flow field flow fractionation coupled with multiangle laser light scattering. Amylopectins from eight different botanical sources and rabbit liver glycogen were studied. Amylopectins and glycogen were completely solubilized and analyzed, and high mass recoveries were achieved (81.7-100.0%). Amylopectin Mw, RG, and the hydrodynamic coefficient nuG (the slope of the log-log plot of RGi vs Mi) were within the ranges 1.05-3.18 x 10(8) g mol(-1), 163-229 nm, 0.37-0.49, respectively. The data were also considered in terms of structural parameters. The results were analyzed by comparison with the theory of hyperbranched polymers (Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953; Burchard, W. Macromolecules, 1977, 10, 919-927). This theory, based upon the ABC model, has been shown to underestimate the branching degrees of amylopectins. However, quantitative agreement with the data in the literature was found for amylopectins when using the ABC model modified by the introduction of a multiplying factor, determined from previously described amylopectin structures in terms of the number of branching point calculations.  相似文献   
74.
The main target of cAMP is PKA, the main regulatory subunit of which (PRKAR1A) presents mutations in two genetic disorders: acrodysostosis and Carney complex. In addition to the initial recurrent mutation (R368X) of the PRKAR1A gene, several missense and nonsense mutations have been observed recently in acrodysostosis with hormonal resistance. These mutations are located in one of the two cAMP-binding domains of the protein, and their functional characterization is presented here. Expression of each of the PRKAR1A mutants results in a reduction of forskolin-induced PKA activation (measured by a reporter assay) and an impaired ability of cAMP to dissociate PRKAR1A from the catalytic PKA subunits by BRET assay. Modeling studies and sensitivity to cAMP analogs specific for domain A (8-piperidinoadenosine 3′,5′-cyclic monophosphate) or domain B (8-(6-aminohexyl)aminoadenosine-3′,5′-cyclic monophosphate) indicate that the mutations impair cAMP binding locally in the domain containing the mutation. Interestingly, two of these mutations affect amino acids for which alternative amino acid substitutions have been reported to cause the Carney complex phenotype. To decipher the molecular mechanism through which homologous substitutions can produce such strikingly different clinical phenotypes, we studied these mutations using the same approaches. Interestingly, the Carney mutants also demonstrated resistance to cAMP, but they expressed additional functional defects, including accelerated PRKAR1A protein degradation. These data demonstrate that a cAMP binding defect is the common molecular mechanism for resistance of PKA activation in acrodysosotosis and that several distinct mechanisms lead to constitutive PKA activation in Carney complex.  相似文献   
75.
Xanthomonad-like bacteria that are associated with common bacterial blight of bean in Iran were identified on the basis of their colonial morphology, biochemical and serological properties, presence of a specific DNA fragment using PCR primers and pathogenicity on bean. Xanthomonas axonopodis pv. phaseoli (Xap) strains were further characterized using rep-PCR and restriction fragment length polymorphism (RFLP). RFLP profiles generated by the restriction endonucleases RsaI, TaqI, HaeIII and Sau96I and rep-PCR analysis revealed that Iranian strains were relatively genetically homogenous. The similarity coefficients among the strains ranged from 0.87 to 1. The genetic diversity coefficients among strains from three infected provinces, Isfahan, Markazi and Lorestan, were 0.019, 0.072 and 0.033, respectively. The low overall level of polymorphism within Xap isolates collected from the three Iranian infected regions could suggest that few initial inoculum introductions might have distributed among these different bean-growing areas in Iran.  相似文献   
76.
The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant cutaneous resident cells. Three-dimensional chitosan nanofibrillar scaffolds produced by electrospinning were compared with evaporated films and freeze-dried sponges for their biological properties. The nanofibrillar structure strongly improved cell adhesion and proliferation in vitro. When implanted in mice, the nanofibrillar scaffold was colonized by mesenchymal cells and blood vessels. Accumulation of collagen fibrils was also observed. In contrast, sponges induced a foreign body granuloma. When used as a dressing covering full-thickness skin wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis compartments. Altogether our data illustrate the critical importance of the nanofibrillar structure of chitosan devices for their full biocompatibility and demonstrate the significant beneficial effect of chitosan as a wound-healing biomaterial.  相似文献   
77.
A new α-amylase from Rhizomucor sp. (RA) was studied in detail due to its very efficient hydrolysis of raw starch granules at low temperature (32 °C). RA contains a starch binding domain (SBD) connected to the core amylase catalytic domain by a O-glycosylated linker. The mode of degradation of native maize starch granules and, in particular, the changes in the starch structure during the hydrolysis, was monitored for hydrolysis of raw starch at concentrations varying between 0.1 and 31%. RA was compared to porcine pancreatic α-amylase (PPA), which has been widely studied either on resistant starch or as a model enzyme in solid starch hydrolysis studies. RA is particularly efficient on native maize starch and release glucose only. The hydrolysis rate reaches 75% for a 31% starch solution and is complete at 0.1% starch concentration. The final hydrolysis rate was dependent on both starch concentration and enzyme amount applied. RA is also very efficient in hydrolyzing the crystalline domains in the maize starch granule. The major A-type crystalline structure is more rapidly degraded than amorphous domains in the first stages of hydrolysis. This is in agreement with the observed preferential hydrolysis of amylopectin, the starch constituent that forms the backbone of the crystalline part of the granule. Amylose-lipid complexes present in most cereal starches are degraded in a second stage, yielding amylose fragments that then reassociate into B-type crystalline structures, forming the final resistant fraction.  相似文献   
78.
Toxoplasma gondii motility, which is essential for host cell entry, migration through host tissues, and invasion, is a unique form of actin-dependent gliding. It is powered by a motor complex mainly composed of myosin heavy chain A, myosin light chain 1, gliding associated proteins GAP45, and GAP50, the only integral membrane anchor so far described. In the present study, we have combined glycomic and proteomic approaches to demonstrate that all three potential N-glycosylated sites of GAP50 are occupied by unusual N-glycan structures that are rarely found on mature mammalian glycoproteins. Using site-directed mutagenesis, we show that N-glycosylation is a prerequisite for GAP50 transport from the endoplasmic reticulum to the Golgi apparatus and for its subsequent delivery into the inner complex membrane. Assembly of key partners into the gliding complex, and parasite motility are severely impaired in the unglycosylated GAP50 mutants. Furthermore, comparative affinity purification using N-glycosylated and unglycosylated GAP50 as bait identified three novel hypothetical proteins including the recently described gliding associated protein GAP40, and we demonstrate that N-glycans are required for efficient binding to gliding partners. Collectively, these results provide the first detailed analyses of T. gondii N-glycosylation functions that are vital for parasite motility and host cell entry.  相似文献   
79.
The proteasomal lid subunit Rpn11 is essential for maintaining a correct cell cycle and mitochondrial morphology in Saccharomyces cerevisiae. In this paper, we show that the rpn11-m1 mutant has a peculiar cell cycle defect reminiscent of mutants defective in the FEAR pathway that delay the release of the Cdc14 protein phosphatase from the nucleolus. We analyzed the rpn11-m1 phenotypes and found that overexpression of Cdc14 suppresses all the rpn11-m1 defects, including the mitochondrial ones. Suppression by Cdc14 of the rpn11-m1 mitochondrial morphology defect reveals an uncharacterized connection between mitochondrial and cell cycle events. Interestingly, the overexpression of Cdc14 also partially restores the tubular network in an Δmmm2 strain, which lacks a mitochondrial protein belonging to the complex necessary to anchor the mitochondrion to the actin cytoskeleton. Altogether our findings indicate, for the first time, a cross-talk between the cell cycle and mitochondrial morphology.  相似文献   
80.

Background

Rift Valley fever virus (RVFV) causes disease in livestock and humans. It can be transmitted by mosquitoes, inhalation or physical contact with the body fluids of infected animals. Severe clinical cases are characterized by acute hepatitis with hemorrhage, meningoencephalitis and/or retinitis. The dynamics of RVFV infection and the cell types infected in vivo are poorly understood.

Methodology/Principal Findings

RVFV strains expressing humanized Renilla luciferase (hRLuc) or green fluorescent protein (GFP) were generated and inoculated to susceptible Ifnar1-deficient mice. We investigated the tissue tropism in these mice and the nature of the target cells in vivo using whole-organ imaging and flow cytometry. After intraperitoneal inoculation, hRLuc signal was observed primarily in the thymus, spleen and liver. Macrophages infiltrating various tissues, in particular the adipose tissue surrounding the pancreas also expressed the virus. The liver rapidly turned into the major luminescent organ and the mice succumbed to severe hepatitis. The brain remained weakly luminescent throughout infection. FACS analysis in RVFV-GFP-infected mice showed that the macrophages, dendritic cells and granulocytes were main target cells for RVFV. The crucial role of cells of the monocyte/macrophage/dendritic lineage during RVFV infection was confirmed by the slower viral dissemination, decrease in RVFV titers in blood, and prolonged survival of macrophage- and dendritic cell-depleted mice following treatment with clodronate liposomes. Upon dermal and nasal inoculations, the viral dissemination was primarily observed in the lymph node draining the injected ear and in the lungs respectively, with a significant increase in survival time.

Conclusions/Significance

These findings reveal the high levels of phagocytic cells harboring RVFV during viral infection in Ifnar1-deficient mice. They demonstrate that bioluminescent and fluorescent viruses can shed new light into the pathogenesis of RVFV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号