首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   4篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   7篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   15篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1986年   1篇
  1984年   2篇
  1980年   1篇
排序方式: 共有132条查询结果,搜索用时 31 毫秒
41.
Dicarboxylic acids that are produced from renewable resources are becoming attractive building blocks for the polymers industry. In this respect, fumaric acid is very interesting. Its low aqueous solubility facilitates product recovery. To avoid excessive waste salt production during downstream processing, a low pH for fumaric acid fermentation will be beneficial. Studying the influence of pH, working volume and shaking frequency on cell cultivation helped us to identify the best conditions to obtain appropriate pellet morphologies of a wild type strain of Rhizopus oryzae. Using these pellets, the effects of pH and CO(2) addition were studied to determine the best conditions to produce fumaric acid in batch fermentations under nitrogen-limited conditions with glucose as carbon source. Decreasing either the fermentation pH below 5 or increasing the CO(2) content of the inlet air above 10% was unfavourable for the cell-specific productivity, fumaric acid yield, and fumaric acid titer. However, switching off the pH control late in the batch phase did not affect these performance parameters and allowed achieving pH of 3.6. A concentration of 20 gL(-1) of fumaric acid was obtained at pH 3.6 while the average cell mass specific productivity and fumaric acid yield were the same as at pH 5.0. Consequently, relatively modest amounts of inorganic base were required for pH control, while recovery of the acid should be relatively easy at pH 3.6.  相似文献   
42.
Journal of Applied Phycology - Applications of seaweeds require the supply of uniform biomass, yet performance of Ulva is generally characterised by a wide variation across study sites and seasons,...  相似文献   
43.
44.
Partially folded protein species transiently form during folding of most proteins. Often, these species are molten globules, which may be on- or off-pathway to the native state. Molten globules are ensembles of interconverting protein conformers that have a substantial amount of secondary structure, but lack virtually all tertiary side-chain packing characteristics of natively folded proteins. Due to solvent-exposed hydrophobic groups, molten globules are prone to aggregation, which can have detrimental effects on organisms. The molten globule observed during folding of the 179-residue apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can form. Here, we study folding of apoflavodoxin and characterize its molten globule using fluorescence spectroscopy and Förster Resonance Energy Transfer (FRET). Apoflavodoxin is site-specifically labeled with fluorescent donor and acceptor dyes, utilizing dye-inaccessibility of Cys69 in cofactor-bound protein. Donor (i.e., Alexa Fluor 488) is covalently attached to Cys69 in all apoflavodoxin variants used. Acceptor (i.e., Alexa Fluor 568) is coupled to Cys1, Cys131 and Cys178, respectively. Our FRET data show that apoflavodoxin’s molten globule forms in a non-cooperative manner and that its N-terminal 69 residues fold last. In addition, striking conformational differences between molten globule and native protein are revealed, because the inter-label distances sampled in the 111-residue C-terminal segment of the molten globule are shorter than observed for native apoflavodoxin. Thus, FRET sheds light on the off-pathway nature of the molten globule during folding of an α-β parallel protein.  相似文献   
45.
46.
The mechanisms that allow Mycobacterium tuberculosis (Mtb) to persist in human tissue for decades and to then abruptly cause disease are not clearly understood. Regulatory elements thought to assist Mtb to enter such a state include the heme two-component sensor kinases DosS and DosT and the cognate response regulator DosR. We have demonstrated previously that O(2), nitric oxide (NO), and carbon monoxide (CO) are regulatory ligands of DosS and DosT. Here, we show that in addition to O(2) and NO, CO induces the complete Mtb dormancy (Dos) regulon. Notably, we demonstrate that CO is primarily sensed through DosS to induce the Dos regulon, whereas DosT plays a less prominent role. We also show that Mtb infection of macrophage cells significantly increases the expression, protein levels, and enzymatic activity of heme oxygenase-1 (HO-1, the enzyme that produces CO), in an NO-independent manner. Furthermore, exploiting HO-1(+/+) and HO-1(-/-) bone marrow-derived macrophages, we demonstrate that physiologically relevant levels of CO induce the Dos regulon. Finally, we demonstrate that increased HO-1 mRNA and protein levels are produced in the lungs of Mtb-infected mice. Our data suggest that during infection, O(2), NO, and CO are being sensed concurrently rather than independently via DosS and DosT. We conclude that CO, a previously unrecognized host factor, is a physiologically relevant Mtb signal capable of inducing the Dos regulon, which introduces a new paradigm for understanding the molecular basis of Mtb persistence.  相似文献   
47.
We used dedicated magnetic resonance imaging (MRI) equipment and methods to study phloem and xylem transport in large potted plants. Quantitative flow profiles were obtained on a per-pixel basis, giving parameter maps of velocity, flow-conducting area and volume flow (flux). The diurnal xylem and phloem flow dynamics in poplar, castor bean, tomato and tobacco were compared. In poplar, clear diurnal differences in phloem flow profile were found, but phloem flux remained constant. In tomato, only small diurnal differences in flow profile were observed. In castor bean and tobacco, phloem flow remained unchanged. In all plants, xylem flow profiles showed large diurnal variation. Decreases in xylem flux were accompanied by a decrease in velocity and flow-conducting area. The diurnal changes in flow-conducting area of phloem and xylem could not be explained by pressure-dependent elastic changes in conduit diameter. The phloem to xylem flux ratio reflects what fraction of xylem water is used for phloem transport (Münch's counterflow). This ratio was large at night for poplar (0.19), castor bean (0.37) and tobacco (0.55), but low in tomato (0.04). The differences in phloem flow velocity between the four species, as well as within a diurnal cycle, were remarkably small (0.25-0.40 mm s(-1)). We hypothesize that upper and lower bounds for phloem flow velocity may exist: when phloem flow velocity is too high, parietal organelles may be stripped away from sieve tube walls; when sap flow is too slow or is highly variable, phloem-borne signalling could become unpredictable.  相似文献   
48.
Baker's-yeast-mediated asymmetric ethyl 3-oxobutanoate reduction using a fed-batch feeding strategy for both the 3-oxo ester and the electron donor, was explored as potential production system for enantiopure ethyl ( S )-3-hydroxybutanoate. The dual feed strategy was based on kinetic and stoichiometric data. One major aspect is the effect of high product concentrations on the progress of the reduction. According to initial rate experiments, product inhibition occurs at concentrations above 600 mM product causing a 10-fold decrease of the initial biomass-specific reduction rate. By using optimized feed rates and a biomass concentration of 43 g dw l -1 , a product concentration of 350 mM was reached within 80 h with a degree of conversion of 95%. The volumetric productivity was 0.58 g l -1 h -1 , using 2.1 kg pressed yeast kg product -1 and 0.52 kg glucose kg product -1 . During the fed-batch biotransformation the reduction rate continuously decreased and reduction ceased after 80 h, due to biocatalyst inactivation after prolonged use at increasing high product concentrations. The continuous decrease in reducing activity led to very high ethyl 3-oxobutanoate levels in the reactor resulting in an increase of the undesired specific ethyl ( R )-3-hydroxybutanoate production rate. Therefore, the enantiomeric excess of the product decreased, from initially 100 to ~75% at 80 h. It is concluded that the design of processes for efficient asymmetric bioreduction cannot solely be based on initial rate kinetics, but require detailed knowledge of the effects on activity and enantioselectivity upon long-term exposure to process conditions.  相似文献   
49.
Are there intrinsic differences in the rates of photosynthesis, shoot- and root-respiration between inherently fast- and slow-growing monocotyledons at high and low nitrogen supply? To analyze this question we grew 5 monocotyledons, widely differing in their inherent relative growth rate at high and low nitrogen supply in a growth room. Nitrate was exponentially added to the plants, enabling us to compare inherent differences in plant characteristics, without any effect of species differences in the ability to take up nutrients. At high nitrogen supply, the fast-growing species from productive habitats had a higher photosynthetic nitrogen use efficiency and rate of root respiration than the slow-growing ones from unproductive habitats. Only minor differences were observed in their rates of photosynthesis and shoot respiration per unit leaf area. At low nitrogen supply, the rates of photosynthesis and shoot- and root respiration decreased for all species, even though there were no longer any differences in these processes between inherently fast- and slow-growing species. The photosynthetic nitrogen use efficiency increased for all species, and no differences were found among species. Differences in the photosynthetic nitrogen use efficiency among species and nitrogen treatments are discussed in terms of the utilization of the photosynthetic apparatus, whereas differences in respiration rate are discussed in terms of the energy demand for growth, maintenance and ion uptake and their related specific respiratory energy costs. It is concluded that the relatively high abundance of slow-growing species compared to fast-growing ones in unproductive habitats is unlikely to be explained by differences in rates of photosynthesis and respiration or in photosynthetic nitrogen use efficiency.  相似文献   
50.
Adrie, Christophe, Fumito Ichinose, AlexandraHolzmann, Larry Keefer, William E. Hurford, and Warren M. Zapol. Pulmonary vasodilation by nitric oxide gas and prodrugaerosols in acute pulmonary hypertension. J. Appl. Physiol. 84(2): 435-441, 1998.Sodium 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate{DEA/NO;Et2N[N(O)NO]Na} is a compound that spontaneously generates nitric oxide (NO). Becauseof its short half-life (2.1 min), we hypothesized that inhaling DEA/NOaerosol would selectively dilate the pulmonary circulation withoutdecreasing systemic arterial pressure. We compared the pulmonaryselectivity of this new NO donor with two other reference drugs:inhaled NO and inhaled sodium nitroprusside (SNP). In seven awake sheepwith pulmonary hypertension induced by the infusion of U-46619, wecompared the hemodynamic effects of DEA/NO with those of incrementaldoses of inhaled NO gas. In seven additional awake sheep, we examinedthe hemodynamic effects of incremental doses of inhaled nitroprusside(i.e., SNP). Inhaled NO gas selectively dilated the pulmonaryvasculature. Inhaled DEA/NO produced nonselective vasodilation; bothsystemic vascular resistance (SVR) and pulmonary vascular resistance(PVR) were reduced. Inhaled SNP selectively dilated the pulmonarycirculation at low concentrations(102 M), inducing adecrease of PVR of up to 42% without any significant decrease of SVR(5%), but nonselectively dilated the systemic circulation atlarger doses (>102 M). Inconclusion, despite its short half-life, DEA/NO is not a selectivepulmonary vasodilator compared with inhaled NO. Inhaled SNP appears tobe selective to the pulmonary circulation at low doses but not athigher levels.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号