首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4334篇
  免费   318篇
  国内免费   2篇
  2023年   19篇
  2022年   28篇
  2021年   114篇
  2020年   76篇
  2019年   94篇
  2018年   127篇
  2017年   111篇
  2016年   140篇
  2015年   231篇
  2014年   243篇
  2013年   303篇
  2012年   369篇
  2011年   378篇
  2010年   202篇
  2009年   203篇
  2008年   242篇
  2007年   245篇
  2006年   223篇
  2005年   222篇
  2004年   197篇
  2003年   190篇
  2002年   163篇
  2001年   64篇
  2000年   57篇
  1999年   41篇
  1998年   31篇
  1997年   33篇
  1996年   29篇
  1995年   20篇
  1994年   24篇
  1993年   25篇
  1992年   26篇
  1991年   19篇
  1990年   15篇
  1989年   11篇
  1988年   10篇
  1987年   16篇
  1986年   16篇
  1985年   17篇
  1984年   9篇
  1983年   9篇
  1982年   6篇
  1981年   11篇
  1980年   7篇
  1979年   6篇
  1978年   10篇
  1976年   4篇
  1975年   4篇
  1973年   4篇
  1943年   1篇
排序方式: 共有4654条查询结果,搜索用时 187 毫秒
61.
62.

Salicylic acid (SA) is a plant hormone that stimulates the growth and metabolism of plants, also acting as an abiotic elicitor. This study aimed to evaluate the effect of SA on leaf production, leaf area and synthesis of secondary compounds in yarrow plants. The experiments were conducted under field conditions in two consecutive years and f-received SA foliar applications (T1-control; T2-1.0 mmol L−1 applications at 20, 60 and 100 days after planting (DAP) and T3-1.0 mmol L−1 applications at 100 DAP during 3 days). The exogenous application of SA resulted in increases in leaf area (total and specific), number of leaves and leaf mass ratio of yarrow plants, polyphenolic compounds, phenylalanine ammonia-lyase and chalcone synthase enzymes and the antioxidant activity of the plant extract. The HPLC–DAD–MS/MS analysis of phenolic compounds revealed increases in the amounts of quinic acid and rutin. The results of this research lead us to affirm that SA exerted both the hormonal effect on number of leaves and leaf area, and also acted as eliciting substance.

  相似文献   
63.
64.
65.
DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error‐prone, HR uses the sister chromatid and is mostly error‐free. We report that the HR protein Rad52—but not Rad51 and Rad57—acts in concert with the TLS machinery (Rad6/Rad18‐mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light‐induced ssDNA gaps through a non‐recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS‐ and UV‐induced HR); accordingly, Rad52 is required for efficient DNA damage‐induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage‐induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57‐dependent and ‐independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.  相似文献   
66.
67.
Three case studies involving two temperate Australian seagrass species – Pondweed (Ruppia tuberosa) and Ribbon Weed (Posidonia australis) – highlight different approaches to their restoration. Seeds and rhizomes were used in three collaborative programmes to promote new approaches to scale up restoration outcomes.  相似文献   
68.
Saliva is a biofluid that maintains the health of oral tissues and the homeostasis of oral microbiota. Studies have demonstrated that Oral squamous cell carcinoma (OSCC) patients have different salivary microbiota than healthy individuals. However, the relationship between these microbial differences and clinicopathological outcomes is still far from conclusive. Herein, we investigate the capability of using metagenomic and metaproteomic saliva profiles to distinguish between Control (C), OSCC without active lesion (L0), and OSCC with active lesion (L1) patients. The results show that there are significantly distinct taxonomies and functional changes in L1 patients compared to C and L0 patients, suggesting compositional modulation of the oral microbiome, as the relative abundances of Centipeda, Veillonella, and Gemella suggested by metagenomics are correlated with tumor size, clinical stage, and active lesion. Metagenomics results also demonstrated that poor overall patient survival is associated with a higher relative abundance of Stenophotromonas, Staphylococcus, Centipeda, Selenomonas, Alloscordovia, and Acitenobacter. Finally, compositional and functional differences in the saliva content by metaproteomics analysis can distinguish healthy individuals from OSCC patients. In summary, our study suggests that oral microbiota and their protein abundance have potential diagnosis and prognosis value for oral cancer patients. Further studies are necessary to understand the role of uniquely detected metaproteins in the microbiota of healthy and OSCC patients as well as the crosstalk between saliva host proteins and the oral microbiome present in OSCC.  相似文献   
69.
Abstract

This study proposes a bioclimatic characterization and a new biogeographic division for the Antarctic territories up to the province level following the criteria and models of Rivas-Martínez et al. The Antarctic Kingdom comprises the continent of Antarctica, the surrounding ice-covered Antarctic islands, and the associated cold oceanic islands and archipelagos. It has two biogeographic regions: the Antarctic Region and the Subantarctic Insular Region. The Antarctic Region includes the entire pergelid Antarctic continent and the surrounding islands and archipelagos, and is characterized by upper suprapolar hyperoceanic and oceanic or Polar pergelid bioclimates on the coasts. The region has been divided into three pr6ovinces: Maritime Antarctica, West Antarctica and East Antarctica. The Subantarctic Insular Region comprises the circumantarctic islands and archipelagos that are widespread at the southern tip of the planet’s most important oceans, mostly in the subtemperate latitudinal zone inside or not far from the Antarctic Convergence. Bioclimatically, all insular subantarctic territories (excluding the South-American Tierra de Fuego, Terra Magellanica and large islands) are characterized by thermo-suprapolar and semipolar antarctic hyperoceanic bioclimates on the coasts. Four provinces – Falklandian-South Georgian, Kerguelenian, Macquarian and Aucklandian-Campbellian – have been recognized in this region. All these units are characterized by floristic bioindicators.  相似文献   
70.
Accumulation of 5-aminolevulinic acid (ALA) is an event characteristic of porphyrias that may contribute to their pathological manifestations. To investigate effects of ALA independent of porphyrin accumulation we treated rats with the methyl ester of succinylacetone, an inhibitor of 5-aminolevulinic acid dehydratase that accumulates in the porphyric-like syndrome hereditary tyrosinemia. Acute 2-day treatment of fasted rats with succinylacetone methyl ester (SAME) promoted a 27% increase in plasma ALA. This increase in plasma ALA was accompanied by augmentation of the level of total nonheme iron in liver (37%) and brain (20%). Mobilization of iron was also indicated by 49% increase in plasma iron and a 77% increase in plasma transferrin saturation. Liver responded with a mild (12%) increase in ferritin. Under these acute conditions, some indications of oxidative stress were evident: a 15% increase in liver reactive protein carbonyls, and a 42% increase in brain subcellular membrane TBARS. Brain also showed a 44% increase in CuZnSOD activity, consistent with observations in treatment with ALA. Overall, the data indicate that SAME promotes ALA-driven changes in iron metabolism that could lead to increased production of free radicals. The findings support other evidence that accumulation of ALA in porphyrias and hereditary tyrosinemia may induce iron-dependent biological damage that contributes to neuropathy and hepatoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号