首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   87篇
  2023年   5篇
  2022年   11篇
  2021年   13篇
  2020年   14篇
  2019年   15篇
  2018年   19篇
  2017年   20篇
  2016年   30篇
  2015年   50篇
  2014年   58篇
  2013年   73篇
  2012年   89篇
  2011年   85篇
  2010年   63篇
  2009年   45篇
  2008年   51篇
  2007年   71篇
  2006年   42篇
  2005年   38篇
  2004年   42篇
  2003年   49篇
  2002年   33篇
  2001年   18篇
  2000年   8篇
  1999年   17篇
  1998年   9篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   10篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1975年   7篇
  1974年   4篇
  1973年   3篇
  1968年   5篇
  1967年   3篇
  1966年   3篇
  1958年   2篇
排序方式: 共有1106条查询结果,搜索用时 546 毫秒
71.
72.
Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients’ sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.  相似文献   
73.
Indirect assays have claimed to quantify phytate (InsP6) levels in human biofluids, but these have been based on the initial assumption that InsP6 is there, an assumption that our more direct assays disprove. We have shown that InsP6 does not and cannot (because of the presence of an active InsP6 phosphatase in serum) exist in mammalian serum or urine. Therefore, any physiological effects of dietary InsP6 can only be due either to its actions in the gut as a polyvalent cation chelator, or to inositol generated by its dephosphorylation by gut microflora.We are grateful to Dr Vucenik for bringing up a number of interesting points.It is true that we have not quantified the dietary intakes of our human donors any more (but also hardly any less) than has been done by those groups claiming that InsP6 is present in bodily fluids. As a qualitative observation we should point out that in fact all our donors for ref. [1] do have a regular intake of dietary cereals and indeed, one is a strict vegetarian on a high cereal diet. But it is quantification that reveals this to be a specious issue. The limits of detection in our two relevant publications [1,2] for InsP6 in plasma and urine were, respectively, around two and three orders of magnitude lower than the levels claimed to be present by Grases et al. [3] in the fluids of experimentally phytate-deprived human subjects. These numbers make the argument that we could not detect any InsP6 simply because we chose donors on the ‘wrong’ diet untenable.So how have those many claims that InsP6 is present in body fluids come about? For most of them, the simple answer appears to be that the assays used are indirect and are based entirely on the assumption that InsP6 is present in the first place. Thus, for example, Valiente and co-workers [4,5] and Chen and co-workers [6,7] measured organic phosphate remaining after a series of fractionations of urine samples and simply assumed it was due to InsP6, as did March et al. measuring inorganic phosphate after a similar protocol [8]. Grases co-workers [9] have used extensively a less indirect assay, which, after initial ion chromatography and dephosphorylation by a phytase, measures myo-inositol by mass spectrometry, but nevertheless the assay starts with the assumption that InsP6 is there and that this is what they are quantifying. More recently, direct quantification of InsP6 in plasma by mass spectrometry has been claimed [10] on the basis that there are peaks in plasma at m/z 624 running near where InsP6 standards elute in two different HPLC separations [10,11]. But no evidence is presented to show even that these peaks are the same compound, let alone any data to establish firmly that InsP6 is present, e.g. a minimal requirement of m/z quantified to two decimal places with allowance for C13 content or a full disintegration fingerprint (see also [12]). Any quantified misidentification is likely to have a stochastic element to it, and it is noteworthy that Perelló & Grases have stated [11, p. 255]: ‘…we have found some humans and rats having undetectable [InsP6], probably depending on their diet or other unknown factors’. In the light of the preceding discussion, we can offer a simpler explanation: the InsP6 was never there in the first place.In contrast to these claims we have, using two entirely independent specific and sensitive assays with quantified spiking recovery, unambiguously shown that InsP6 is not present in plasma or urine. This is crucial and central to the whole debate about the actions of dietary InsP6, because it means that InsP6 never enters the blood. It is only absorbed after being dephosphorylated, principally to inositol (see [1,2] for further discussion). Ironically, the most direct evidence for this lies in Dr Vucenik''s own data in experiments examining the fate of radioactive InsP6 fed to animals, in which only inositol was detected in the blood [13]. This particular study was, as Dr Vucenik points out in her letter, conducted on mice. However, exactly the same conclusion (i.e. InsP6 does not enter the circulation from the gut) is equally clear in her earlier study [14], which she did not cite and which was indeed on rats; does this omission ‘reflect poorly’ on Dr Vucenik''s own ‘report and the author''s credibility in culling scientific data’?In short, dietary InsP6 can have only two fates: it can stay in the gut, ultimately to be defecated [15], and while it is there it can chelate metal ions to alter their uptake from the gut into the body. This is no ‘straw-man’ and is certainly the most likely explanation for all of the effects of InsP6 on cultured cells, which comprise the majority of the reports cited by Dr Vucenik. Alternatively, InsP6 can be converted to inositol (principally by the gut microflora [15]) and be taken up as such into the circulation; were any InsP6 to get into the blood it would in any case be rapidly dephosphorylated by the phosphatase activity we have shown to be present in human plasma [1].For animal studies, we have raised the possibility [1,2] that it is the inositol so generated (Vitamin Bh, harmless as far as we know) that is the active mediator of any reported beneficial effects of dietary InsP6. We note that most of the websites touting InsP6 as a dietary supplement advocate inositol as an important (essential?) co-supplement; that the only human cancer study highlighted as important by Dr Vucenik that we could examine [16] did not administer InsP6 alone, but only in conjunction with inositol; and that in the few studies where the separate contributions of inositol and InsP6 have been considered, there are data suggesting that it may be the inositol that matters (e.g. fig. 1 of [17]). Moreover, we are not the only ones to suggest this idea. In the Discussion of their paper (on mice) in which InsP6 was shown not to enter the blood from the gut [13], Dr Vucenik and her colleagues state: ‘Inositol may be responsible for the antitumor actions observed in both chemopreventitive and efficacy studies of IP6 … A question remains as to whether the activity of IP6 in animal models can be replicated by administration of inositol alone because only inositol was detected in plasma and tumor after oral gavage’. Precisely.Finally, returning to InsP6 itself, which, incidentally, is officially classified by the FDA as a ‘fake’ cancer cure (http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/enforcementactivitiesbyfda/ucm171057.htm), our data lead inevitably to the conclusion that while InsP6 might impact on the gut environment and thus indirectly on its microflora [2,12], its only plausible direct action on the body will be to inhibit cation uptake from the diet. Although InsP6 binds trivalent cations with a higher affinity than divalents [18], it is nevertheless comparatively non-specific in this action. Administering chemicals to the diet to manipulate ion uptake is not unknown in modern medicine; for treatment of iron disorders such as haemochromatosis, as an alternative to injection of Desferral, oral administration of the closely related chelator Deferasirox is now sometimes recommended [19]. But Deferasirox is a highly iron-specific chelator, administered under close medical supervision for a directly iron-related pathology. Recommending unmonitored, widespread administration of InsP6 to address a veritable multitude of different pathologies [20] seems to us to be an entirely different matter.In a well-fed human, where the cation to InsP6 ratio in the diet is high, InsP6 may very well do no harm (it is, after all, a natural component of our diet) and there is much evidence to support this idea, as argued by Dr Vucenik. But if InsP6 is not impacting on cation uptake from the diet to do any harm it is difficult to understand how at exactly the same time it can impact on the same uptake to do good. (See reference [21] for the studies Dr Vucenik requested ‘unequivocally demonstrating the toxicity of pure Ca-Mg-InsP6 as it occurs naturally’ in humans with low dietary cation uptake.) In the light of the above discussion and our rigorous data, we stand unreservedly by our original closing statement [1]: ‘…that chronically altering cation absorption from the gut by artificially loading the diet with a non-specific chelator … in the hope that it might impact indirectly on cancer or other pathologies seems highly inadvisable’.  相似文献   
74.
75.
This paper examines the relationship between parasite infection rates and reproductive function in wild Iberian ibexes. The animals examined were 43 adult males shot during the rutting season. Gastrointestinal and pulmonary nematodes, intestinal cestodes and intestinal coccidia were determined by coprological analysis. Protozoa in the muscles were detected by biopsy. Epididymal spermatozoa were collected from recovered testes. Sperm motility, the integrity of the plasma membrane, sperm viability, sperm morphology and acrosome integrity were all evaluated. Bronchopulmonary nematode larvae were detected with a prevalence of 100% (mean intensity 216.8 ± 65.8; index of dispersion 476.1, indicating an aggregated pattern). A negative correlation (R = -0.39; P < 0.05) was found between the shedding of larval lungworms and the percentage of sperm morphological abnormalities. Although directional relationships could not be identified, the present findings suggest that reproductive effort imposes a cost in terms of depressed parasite resistance.  相似文献   
76.

Background

Although some epidemiologic studies found inverse associations between alcohol drinking and Parkinson's disease (PD), the majority of studies found no such significant associations. Additionally, there is only limited research into the possible interactions of alcohol intake with aldehyde dehydrogenase (ALDH) 2 activity with respect to PD risk. We examined the relationship between alcohol intake and PD among Japanese subjects using data from a case-control study.

Methods

From 214 cases within 6 years of PD onset and 327 controls without neurodegenerative disease, we collected information on "peak", as opposed to average, alcohol drinking frequency and peak drinking amounts during a subject's lifetime. Alcohol flushing status was evaluated via questions, as a means of detecting inactive ALHD2. The multivariate model included adjustments for sex, age, region of residence, smoking, years of education, body mass index, alcohol flushing status, presence of selected medication histories, and several dietary factors.

Results

Alcohol intake during peak drinking periods, regardless of frequency or amount, was not associated with PD. However, when we assessed daily ethanol intake separately for each type of alcohol, only Japanese sake (rice wine) was significantly associated with PD (adjusted odds ratio of ≥66.0 g ethanol per day: 3.39, 95% confidence interval: 1.10-11.0, P for trend = 0.001). There was no significant interaction of alcohol intake with flushing status in relation to PD risk.

Conclusions

We did not find significant associations between alcohol intake and PD, except for the daily amount of Japanese sake. Effect modifications by alcohol flushing status were not observed.  相似文献   
77.
78.
Onnebo SM  Saiardi A 《Cell》2007,129(4):647-649
Inositol pyrophosphates are unique signaling molecules implicated in the regulation of diverse cellular processes. Two new studies by Mulugu et al. (2007) and Lee et al. (2007) extend the biological and metabolic diversity of this class of molecules. They identify yeast Vip1 as a new inositol pyrophosphate synthase and show that the products of Vip1 activity regulate a cyclin/cyclin-dependent kinase complex.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号