首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   29篇
  2023年   6篇
  2022年   3篇
  2021年   14篇
  2020年   11篇
  2019年   12篇
  2018年   14篇
  2017年   14篇
  2016年   12篇
  2015年   26篇
  2014年   29篇
  2013年   19篇
  2012年   37篇
  2011年   26篇
  2010年   18篇
  2009年   16篇
  2008年   25篇
  2007年   18篇
  2006年   9篇
  2005年   11篇
  2004年   11篇
  2003年   4篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有393条查询结果,搜索用时 17 毫秒
31.
The economics surrounding five algae-to-fuels process scenarios were examined. The different processes modeled were as follows: an open pond producing either triacylglycerides (TAG) or free fatty acid methyl ester (FAME), a solar-lit photobioreactor producing either FAME or free fatty acids (FFA), and a light emitting diode irradiated (LED-lighted) photobioreactor producing TAG. These processes were chosen to represent both classical and esoteric approaches presented in the open literature. Viable (or suggested) processing techniques to liberate and purify (and convert) the microalgal triacylglycerides were then modeled to accompany each growth option. The investment and cost per kg of fuel or fuel precursor for each process was determined. The open pond produced TAG at ~$7.50/kg, while the process using the LED-lit photobioreactor produced TAG at ~$33/kg. The scenario containing the solar-lit photobioreactor produced FAME at ~$25/kg, while the open pond produced FAME at ~$4/kg. The scenario containing the solar-lit photobioreactor produced FFA at ~$29/kg. The open pond scenarios appear to be closest to the $1/kg pricepoint at this time, and thus are the most viable economic options. Future technological advancements that reduce the cost of bioreactor vessels, LED lighting, and solvent recovery, may reduce the oil production costs of these scenarios to a more attractive level.  相似文献   
32.
Xie R  Tu M  Wu Y  Adhikari S 《Bioresource technology》2011,102(7):4938-4942
5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase.The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.  相似文献   
33.
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex.  相似文献   
34.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   
35.
Relative thermotolerance of the enzyme, L-myo-inositol-1-phosphate synthase (MIPS; EC: 5.5.1.4), from the chloroplastic and cytosolic sources of Diplopterygium glaucum was studied. The purification involved streptomycin sulphate precipitation, ammonium sulphate fractionation, ion-exchange chromatography, and molecular sieve chromatography. After the final chromatography, 16.62% of chloroplastic and 13.47% of cytosolic MIPS could be recovered. Between 15 degrees C and 55 degrees C, the two forms of MIPS exhibited differential thermal stability, which is related to the presence of the MIPS co-factor, NAD+. Added NAD+ increased the lower thermotolerance of the chloroplastic MIPS and the removal of 'built-in' NAD+ decreased the higher thermal stability of the cytosolic MIPS.  相似文献   
36.
We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.  相似文献   
37.
Development is often coordinated by biologically active mobile compounds that move between cells or organs. Arabidopsis mutants with defects in the BYPASS1 (BPS1) gene overproduce an active mobile compound that moves from the root to the shoot and inhibits growth. Here, we describe two related Arabidopsis genes, BPS2 and BPS3. Analyses of single, double and triple mutants revealed that all three genes regulate production of the same mobile compound, the bps signal, with BPS1 having the largest role. The triple mutant had a severe embryo defect, including the failure to properly establish provascular tissue, the shoot meristem and the root meristem. Aberrant expression of PINFORMED1, DR5, PLETHORA1, PLETHORA2 and WUSCHEL-LIKE HOMEOBOX5 were found in heart-stage bps triple-mutant embryos. However, auxin-induced gene expression, and localization of the PIN1 auxin efflux transporter, were intact in bps1 mutants, suggesting that the primary target of the bps signal is independent of auxin response. Thus, the bps signal identifies a novel signaling pathway that regulates patterning and growth in parallel with auxin signaling, in multiple tissues and at multiple developmental stages.  相似文献   
38.

Backgroud and aims

This study was conducted to reveal the genetic diversity of soybean-nodulating rhizobia in Nepal in relation to climate and soil properties.

Method

A total of 102 bradyrhizobial strains were isolated from the root nodules of soybeans cultivated in 12 locations in Nepal varying in climate and soil properties, and their genetic diversity was examined based on 16S rDNA, ITS regions of 16S–23S rDNA, nodC and nifH. In vitro growth properties of some representative strains were examined to elucidate their characteristic distribution in Nepal.

Results

Four species of the genus Bradyrhizobium were isolated, and B. japonicum dominated at temperate locations, while in subtropical locations, B. elkanii, B. yuanmingense, and B. liaoningense dominated at acidic, moderately acidic, and slightly alkaline soils, respectively. The relative nodule occupancies could not be fully explained by their in vitro growth properties. Similar nodC and nifH genes among the strains suggested co-evolution of these genes also in Nepal, probably through horizontal gene transfer.

Conclusions

The influence of climate and soil pH on diversity at the sub-species level was revealed. It is concluded that the highly diverse climate and soils in Nepal might be conducive for the existence of diverse soybean rhizobial strains.  相似文献   
39.
Proteolytic degradation of fibrin, the major structural component in blood clots, is critical both during normal wound healing and in the treatment of ischemic stroke and myocardial infarction. Fibrin-containing clots experience substantial strain due to platelet contraction, fluid shear, and mechanical stress at the wound site. However, little is understood about how mechanical forces may influence fibrin dissolution. We used video microscopy to image strained fibrin clots as they were degraded by plasmin, a major fibrinolytic enzyme. Applied strain causes up to 10-fold reduction in the rate of fibrin degradation. Analysis of our data supports a quantitative model in which the decrease in fibrin proteolysis rates with strain stems from slower transport of plasmin into the clot. We performed fluorescence recovery after photobleaching (FRAP) measurements to further probe the effect of strain on diffusive transport. We find that diffusivity perpendicular to the strain axis decreases with increasing strain, while diffusivity along the strain axis remains unchanged. Our results suggest that the properties of the fibrin network have evolved to protect mechanically loaded fibrin from degradation, consistent with its function in wound healing. The pronounced effect of strain upon diffusivity and proteolytic susceptibility within fibrin networks offers a potentially useful means of guiding cell growth and morphology in fibrin-based biomaterials.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号