首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   52篇
  国内免费   1篇
  2023年   2篇
  2021年   15篇
  2020年   5篇
  2019年   12篇
  2018年   13篇
  2017年   12篇
  2016年   20篇
  2015年   37篇
  2014年   31篇
  2013年   32篇
  2012年   44篇
  2011年   42篇
  2010年   26篇
  2009年   25篇
  2008年   40篇
  2007年   32篇
  2006年   12篇
  2005年   20篇
  2004年   17篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   4篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1971年   1篇
  1962年   1篇
  1940年   1篇
  1910年   1篇
排序方式: 共有496条查询结果,搜索用时 652 毫秒
81.
Unlike the adjustable gastric banding procedure (AGB), Roux-en-Y gastric bypass surgery (RYGBP) in humans has an intriguing effect: a rapid and substantial control of type 2 diabetes mellitus (T2DM). We performed gastric lap-band (GLB) and entero-gastro anastomosis (EGA) procedures in C57Bl6 mice that were fed a high-fat diet. The EGA procedure specifically reduced food intake and increased insulin sensitivity as measured by endogenous glucose production. Intestinal gluconeogenesis increased after the EGA procedure, but not after gastric banding. All EGA effects were abolished in GLUT-2 knockout mice and in mice with portal vein denervation. We thus provide mechanistic evidence that the beneficial effects of the EGA procedure on food intake and glucose homeostasis involve intestinal gluconeogenesis and its detection via a GLUT-2 and hepatoportal sensor pathway.  相似文献   
82.
The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins.  相似文献   
83.
The photochemical behavior of intact stream periphyton communities in France was evaluated in response to the time course of natural light. Intact biofilms grown on glass substrata were collected at three development stages in July and November, and structural parameters of the biofilms were investigated (diatom density and taxonomy). At each season, physiological parameters based on pigment analysis (HPLC) and pulse‐amplitude‐modulated (PAM) chl fluorescence technique were estimated periodically during a day from dawn to zenith. Regardless of the community studied, the optimal quantum yield of PSII (Fv/Fm), the effective PSII efficiency (ΦPSII), the nonphotochemical quenching (NPQ), and the relative electron transport rate (rETR) exhibited clear dynamic patterns over the morning. Moreover, microalgae responded to the light increase by developing the photoprotective xanthophyll cycle. The analysis of PI parameters and pigment profiles suggests that July communities were adapted to higher light environments in comparison with November ones, which could be partly explained by a shift in the taxonomic composition. Finally, differences between development stages were significant only in July. In particular, photoinhibition was less pronounced in mature assemblages, indicating that self‐shading (in relation to algal biomass) could have influenced photosynthesis in older communities.  相似文献   
84.
The respiratory syncytial virus (RSV) matrix (M) protein is localized in the nucleus of infected cells early in infection but is mostly cytoplasmic late in infection. We have previously shown that M localizes in the nucleus through the action of the importin β1 nuclear import receptor. Here, we establish for the first time that M''s ability to shuttle to the cytoplasm is due to the action of the nuclear export receptor Crm1, as shown in infected cells, and in cells transfected to express green fluorescent protein (GFP)-M fusion proteins. Specific inhibition of Crm1-mediated nuclear export by leptomycin B increased M nuclear accumulation. Analysis of truncated and point-mutated M derivatives indicated that Crm1-dependent nuclear export of M is attributable to a nuclear export signal (NES) within residues 194 to 206. Importantly, inhibition of M nuclear export resulted in reduced virus production, and a recombinant RSV carrying a mutated NES could not be rescued by reverse genetics. That this is likely to be due to the inability of a nuclear export deficient M to localize to regions of virus assembly is indicated by the fact that a nuclear-export-deficient GFP-M fails to localize to regions of virus assembly when expressed in cells infected with wild-type RSV. Together, our data suggest that Crm1-dependent nuclear export of M is central to RSV infection, representing the first report of such a mechanism for a paramyxovirus M protein and with important implications for related paramyxoviruses.The Pneumovirus respiratory syncytial virus (RSV) within the Paramyxoviridae family is the most common cause of lower-respiratory-tract disease in infants (7). The negative-sense single-strand RNA genome of RSV encodes two nonstructural and nine structural proteins, comprising the envelope glycoproteins (F, G, and SH), the nucleocapsid proteins (N, P, and L), the nucleocapsid-associated proteins (M2-1 and M2-2), and the matrix (M) protein (1, 7, 11). Previously, we have shown that M protein localizes in the nucleus at early stages of infection, but later in infection it is localized mainly in the cytoplasm, in association with nucleocapsid-containing cytoplasmic inclusions (13, 16). The M proteins of other negative-strand viruses, such as Sendai virus, Newcastle disease virus, and vesicular stomatitis virus (VSV), have also been observed in the nucleus at early stages of infection (32, 40, 48). Interestingly, the M proteins of all of these viruses, including RSV, play major roles in virus assembly, which take place in the cytoplasm and at the cell membrane (11, 12, 24, 34, 36, 39), but the mechanisms by which trafficking between the nucleus and cytoplasm occurs are unknown.The importin β family member Crm1 (exportin 1) is known to mediate nuclear export of proteins bearing leucine-rich nuclear export signals (NES) (8, 9, 18, 19, 37, 42, 43), such as the human immunodeficiency virus type 1 Rev protein (4). In the case of the influenza virus matrix (M1) protein, binding to the influenza virus nuclear export protein, which possesses a Crm1-recognized NES, appears to be responsible for its export from the nucleus, bound to the influenza virus RNA (3).We have recently shown that RSV M localizes in the nucleus through a conventional nuclear import pathway dependent on the nuclear import receptor importin β1 (IMPβ1) and the guanine nucleotide-binding protein Ran (14). In the present study, we show for the first time that RSV M possesses a Crm1-dependent nuclear export pathway, based on experiments using the specific inhibitor leptomycin B (LMB) (25), both in RSV-infected cells and in green fluorescent protein (GFP)-M fusion protein-expressing transfected cells. We use truncated and point-mutated M derivatives to map the Crm1-recognized NES within the M sequence and show that Crm1-dependent nuclear export is critical to the RSV infectious cycle, since LMB treatment early in infection, inhibiting M export from the nucleus, reduces RSV virion production and a recombinant RSV carrying a NES mutation in M was unable to replicate, probably because M deficient in nuclear export could not localize to areas of virus assembly, as shown in RSV-infected cells transfected to express GFP-M. This is the first report of a Crm1-mediated nuclear export pathway for a paramyxovirus M protein, with implications for the trafficking and function of other paramyxovirus M proteins.  相似文献   
85.
We tested the cross-amplification of 26 microsatellites developed for passerines and an additional three developed for Gallinula species in eight European Coots from two populations. Sixteen microsatellite markers successfully amplified, of which nine were polymorphic with 2–6 alleles (mean 3.7 alleles) and an expected heterozygosity (H e) ranging from 0.375 to 0.805 (mean H e = 0.589). On average, we found 2.22 alleles/locus and a mean H e of 0.440 in one nest, and 2.56 alleles/locus and a mean H e of 0.494 in the other one. These nine polymorphic markers could be of potential use in studies of genetic variability, population structure and reproductive strategy of European Coots.  相似文献   
86.
In healthy humans, a high-saturated-fat/high-sucrose meal induces vascular endothelial dysfunction, a hallmark of atherogenesis. This transient dysfunction indicates a loss in nitric oxide (NO) production and/or bioactivity in the vasculature but it remains unknown if this is the local manifestation of a general impairment in NO pathway in the postprandial state. Here, we studied whole-body NO production and systemic NO bioactivity in postprandial endothelial dysfunction, as induced by a high-saturated-fat, high-sucrose meal.We first developed a physiological test of endothelial function on conscious rats, based on the transient fall in blood pressure after iv acetylcholine, and showed that this response was NO-dependent. As assessed with this method in healthy rats, endothelial function decreased during the postprandial state, being 60 ± 7% lower than baseline at 6 h after the meal challenge, associated with important elevations in plasma triglycerides and hydroperoxides. Aortic superoxide anion production, as assessed by oxidative fluorescent detection, was higher 6 h after the meal challenge than after the nutrients vehicle (water). During the postprandial period, plasma cGMP, but not plasma ANP, markedly decreased, indicating a general decrease in NO bioavailability, which was numerically maximal 4 h after the meal challenge. As determined 4 h after ingestion by a tracer-based method using iv [15N2-(guanido)]-arginine, the whole-body NO production fell by 27 ± 9% postprandially.This is the first study evidencing that a meal challenge that impairs the stimulated, NO-mediated, vascular response also reduces whole-body basal NO production and bioavailability. Postprandial pathophysiology may build on this general, fundamental alteration in NO production.  相似文献   
87.
88.
Newborns and young infants suffer increased infectious morbidity and mortality as compared to older children and adults. Morbidity and mortality due to infection are highest during the first weeks of life, decreasing over several years. Furthermore, most vaccines are not administered around birth, but over the first few years of life. A more complete understanding of the ontogeny of the immune system over the first years of life is thus urgently needed. Here, we applied the most comprehensive analysis focused on the innate immune response following TLR stimulation over the first 2 years of life in the largest such longitudinal cohort studied to-date (35 subjects). We found that innate TLR responses (i) known to support Th17 adaptive immune responses (IL-23, IL-6) peaked around birth and declined over the following 2 years only to increase again by adulthood; (ii) potentially supporting antiviral defense (IFN-α) reached adult level function by 1 year of age; (iii) known to support Th1 type immunity (IL-12p70, IFN-γ) slowly rose from a low at birth but remained far below adult responses even at 2 years of age; (iv) inducing IL-10 production steadily declined from a high around birth to adult levels by 1 or 2 years of age, and; (v) leading to production of TNF-α or IL-1β varied by stimuli. Our data contradict the notion of a linear progression from an 'immature' neonatal to a 'mature' adult pattern, but instead indicate the existence of qualitative and quantitative age-specific changes in innate immune reactivity in response to TLR stimulation.  相似文献   
89.
Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high‐fat diet‐induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil‐ and macrophage‐based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi‐infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high‐fat diet, toll‐like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow‐derived macrophages from obese, B. burgdorferi‐infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice.  相似文献   
90.
We investigated three families whose offspring had extreme microcephaly at birth and profound mental retardation. Brain scans and postmortem data showed that affected individuals had brains less than 10% of expected size (≤10 standard deviation) and that in addition to a massive reduction in neuron production they displayed partially deficient cortical lamination (microlissencephaly). Other body systems were apparently unaffected and overall growth was normal. We found two distinct homozygous mutations of NDE1, c.83+1G>T (p.Ala29GlnfsX114) in a Turkish family and c.684_685del (p.Pro229TrpfsX85) in two families of Pakistani origin. Using patient cells, we found that c.83+1G>T led to the use of a novel splice site and to a frameshift after NDE1 exon 2. Transfection of tagged NDE1 constructs showed that the c.684_685del mutation resulted in a NDE1 that was unable to localize to the centrosome. By staining a patient-derived cell line that carried the c.83+1G>T mutation, we found that this endogeneously expressed mutated protein equally failed to localize to the centrosome. By examining human and mouse embryonic brains, we determined that NDE1 is highly expressed in neuroepithelial cells of the developing cerebral cortex, particularly at the centrosome. We show that NDE1 accumulates on the mitotic spindle of apical neural precursors in early neurogenesis. Thus, NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. Our data further highlight the importance of the centrosome in multiple aspects of neurodevelopment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号