首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   11篇
  2023年   2篇
  2021年   13篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   15篇
  2012年   12篇
  2011年   14篇
  2010年   6篇
  2009年   1篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
81.
82.
The objectives of the study were to evaluate the effectiveness of phenolic resin in protecting oil palm stem (OPS) plywood against both subterranean termites (Coptotermes curvignathus) and white rot fungi (Pycnoporous sanguineus). Specially cooked, Low molecular weight phenol formaldehyde (LMW PF) resin was used to treat the OPS veneer whilst commercial urea formaldehyde (UF) resin was used to bond the phenolic-treated veneer. OPS plywood were produced using two types of lay-up (100% outer veneer type and 100% inner veneer type) with adhesive spread rate of 200 g/m2. The results show that treatment of OPS veneer with LMW PF has significantly enhanced the resistance of OPS plywood against both termites and white rot fungi. In the termites resistance test, the percentage of weight loss for untreated samples were 19.2% (outer veneer) and 23.9% (inner veneer), while for phenolic treated samples were only 10.7% and 15.8%, respectively. The phenolic treatment was able to enhance the resistance towards termites by 38% and towards white rot fungi by 62%. The study has shown LMW PF resin can be used to protect OPS plywood from termites and white rot fungi.  相似文献   
83.
IL-17 is a pro-inflammatory mediator that is believed to play a critical role in regulating tissue inflammation during asthma, COPD, as well as other inflammatory disorders. The level of expression of IL-17 has been shown to be upregulated in lung bronchial tissue of asthmatic patients. Several reports have provided further evidence that this cytokine could play a key role in enhancing the migration of inflammatory as well as structural cells of the bronchial lung tissue during asthma and COPD. B cell infiltration to sites of inflammation during inflammatory disorders such as bowel disease, asthma and COPD has been reported. Accordingly, in this study we hypothesized that IL-17 may exert a chemotactic effect on primary B cells during asthma. We observed that B cells from asthmatic patients expressed significantly higher levels of IL-17RA and IL-17RC, compared to those of healthy subjects. Using an in-vitro migration assay, B cells were shown to migrate towards both IL-17A and IL-17F. Interestingly, blocking IL-17A and IL-17F signaling using either anti-IL-17R antibodies or MAP kinase inhibitors prevented in vitro migration of B cell towards IL-17. These observations indicate a direct chemotactic effect of IL-17 cytokines on primary peripheral blood B cells with higher effect being on asthmatic B cells. These findings revealed a key role for IL-17 in enhancing the migration of B cells to the lung tissue during asthma or COPD.  相似文献   
84.
Deep resequencing of functional regions in human genomes is key to identifying potentially causal rare variants for complex disorders. Here, we present the results from a large-sample resequencing (n = 285 patients) study of candidate genes coupled with population genetics and statistical methods to identify rare variants associated with Autism Spectrum Disorder and Schizophrenia. Three genes, MAP1A, GRIN2B, and CACNA1F, were consistently identified by different methods as having significant excess of rare missense mutations in either one or both disease cohorts. In a broader context, we also found that the overall site frequency spectrum of variation in these cases is best explained by population models of both selection and complex demography rather than neutral models or models accounting for complex demography alone. Mutations in the three disease-associated genes explained much of the difference in the overall site frequency spectrum among the cases versus controls. This study demonstrates that genes associated with complex disorders can be mapped using resequencing and analytical methods with sample sizes far smaller than those required by genome-wide association studies. Additionally, our findings support the hypothesis that rare mutations account for a proportion of the phenotypic variance of these complex disorders.  相似文献   
85.
Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (~1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species.  相似文献   
86.
87.
88.
Iron overload is quite common in patients suffering from hemoglobinopathies causing arthropathies, endocrinal affection and neuropathies. Recently low bone mass was added to the list of complications. This study is conducted to find any correlation between serum iron level and low bone mass in sickle cell anemia (SCA). Patients ≥18 years of age with sickle cell anemia, who attended outpatient clinics or admitted to King Fahd University Hospital, Al Khobar, Saudi Arabia,between 1st September 2006 and August 2007 were the subjects of this study. Patients age and sex were documented and body mass index was calculated. Apart from routine hematological tests, serum ferritin, serum Iron level, total estradiol, testosterone level was done. Bone mineral density measurement was done using dual energy X-ray absorptiometry (DEXA) at upper femur and lumbar spine. The data of 100 patients was analyzed, 48 males and 52 females. The mean age was 27.5 ± 6.1 years. In 64 patients (32 males and 32 females) serum iron level was 319.35 μg/dl and the mean serum ferritin level in males and females was within the normal range. Sixty-eight percent of females and 71.8% of males patients in whom serum iron was high had lower bone mass P = < 0.001. Our study shows that SCA patients in whom serum iron level was higher than normal effected bone mass. Further studies are needed to confirm this as a cause of osteoporosis in SCA patients.  相似文献   
89.
Li JH  Hamdan FF  Kim SK  Jacobson KA  Zhang X  Han SJ  Wess J 《Biochemistry》2008,47(9):2776-2788
G protein-coupled receptor (GPCR) function can be modulated by different classes of ligands including full and inverse agonists. At present, little is known about the conformational changes that agonist ligands induce in their target GPCRs. In this study, we employed an in situ disulfide cross-linking strategy to monitor ligand-induced structural changes in a series of cysteine (Cys)-substituted mutant M 3 muscarinic acetylcholine receptors. One of our goals was to study whether the cytoplasmic end of transmembrane domain V (TM V), a region known to be critically involved in receptor/G protein coupling, undergoes a major conformational change, similar to the adjacent region of TM VI. Another goal was to determine and compare the disulfide cross-linking patterns observed after treatment of the different mutant receptors with full versus inverse muscarinic agonists. Specifically, we generated 20 double Cys mutant M 3 receptors harboring one Cys substitution within the cytoplasmic end of TM V (L249-I253) and a second one within the cytoplasmic end of TM VI (A489-L492). These receptors were transiently expressed in COS-7 cells and subsequently characterized in pharmacological and disulfide cross-linking studies. Our cross-linking data, in conjunction with a three-dimensional model of the M 3 muscarinic receptor, indicate that M 3 receptor activation does not trigger major structural disturbances within the cytoplasmic segment of TM V, in contrast to the pronounced structural changes predicted to occur at the cytoplasmic end of TM VI. We also demonstrated that full and inverse muscarinic agonists had distinct effects on the efficiency of disulfide bond formation in specific double Cys mutant M 3 receptors. The present study provides novel information about the dynamic changes that accompany M 3 receptor activation and how the receptor conformations induced (or stabilized) by full versus inverse muscarinic agonists differ from each other at the molecular level. Because all class I GPCRs are predicted to share a similar transmembrane topology, the conclusions drawn from the present study should be of broad general relevance.  相似文献   
90.
Microbially induced carbonate precipitation (MICP) and associated biogas production may provide sustainable means of mitigating a number of geotechnical challenges associated with granular soils. MICP can induce interparticle soil cementation, mineral precipitation in soil pore space and/or biogas production to address geotechnical problems such as slope instability, soil erosion and scour, seepage of levees and cutoff walls, low bearing capacity of shallow foundations, and earthquake-induced liquefaction and settlement. Microbial denitrification has potential for improving the mechanical and hydraulic properties of soils because it promotes precipitation of calcium carbonate (CaCO3) and produces nitrogen (N2) gas without generating toxic by-products. We evaluated the potential for inducing carbonate precipitation in soil via bacterial denitrification using bench-scale experiments with the facultative anaerobe Pseudomonas denitrificans. Bench-scale experiments were conducted (1) without calcium in an N-rich bacterial growth medium in 2.0 L glass batch reactors and (2) with a source of calcium in sand-filled acrylic columns. Changes of pH, alkalinity, NO3? and NO2? in the batch reactors and columns, quantification of biogas production and observations of calcium-carbonate precipitation in the sand-filled columns indicate that denitrification led to carbonate precipitation and particle cementation in the pore water as well as a substantial amount of biogas production in both systems. These results document that bacterial denitrification has potential as a soil improvement mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号