首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   20篇
  2023年   2篇
  2022年   7篇
  2021年   14篇
  2020年   8篇
  2019年   19篇
  2018年   12篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   7篇
  2013年   20篇
  2012年   14篇
  2011年   14篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1978年   1篇
排序方式: 共有193条查询结果,搜索用时 93 毫秒
71.
Chemical functionalization of a single-walled carbon nanotube (CNT) with different carboxylic derivatives including –COOX (X?=?H, CH3, CH2NH2, CH3Ph, CH2NO2, and CH2CN) has been theoretically investigated in terms of geometric, energetic, and electronic properties. Reaction energies have been calculated to be in the range of ?0.23 to ?7.07 eV. The results reveal that the reaction energy is increased by increasing the electron withdrawing character of the functional groups so that the relative magnitude order is ?CH2NO2?>?CH2CN?>?H?>?CH2Ph?>?CH3?>?CH2NH2. The chemical functionalization leads to an increase in HOMO/LUMO energy gap of CNT by about 0.32 to 0.35 eV (except for ?H). LUMO, HOMO, and Fermi level of the CNT are shifted to lower energies especially in the case of ?CH2NO2 and ?CH2CN functional groups. Therefore, it leads to an increment in work function of the tube, impeding the field electron emission.  相似文献   
72.
In order to explore a sensor for detection of toxic hydrogen cyanide (HCN) molecules, interaction of pristine and defected Al-rich aluminum nitride nanotubes (AlNNT) with a HCN molecule has been investigated using density functional theory calculations in terms of energetic, geometric, and electronic properties. It has been found that unlike the pristine AlNNT, the Al-rich AlNNT can effectively interact with the HCN molecule so that its conductivity changes upon the exposure to this molecule. The adsorption energies of HCN on the pristine and defected AlNNTs have been calculated to be in the range of ?0.16 to ?0.62 eV and ?1.75 to ?2.21 eV, respectively. We believe that creating Al-rich defects may be a good strategy for improving the sensitivity of these tubes toward HCN molecules, which cannot be trapped and detected by the pristine AlNNT.  相似文献   
73.
Developing a reliable technique to transform unicellular green algae, Chlorella vulgaris, could boost potentials of using microalgae feedstock in variety of applications such as biodiesel production. Volumetric lipid productivity (VLP) is a suitable variable for evaluating potential of algal species. In the present study, the highest VLP level was recorded for C. vulgaris (79.08 mg l?1 day?1) followed by 3 other strains studied; C. emersonii, C. protothecoides, and C. salina by 54.41, 45 and 18.22 mg l?1day?1, respectively. Having considered the high productivity of C. vulgaris, it was selected for the preliminary transformation experiment through micro-particle bombardment. Plasmid pBI 121, bearing the reporter gene under the control of CaMV 35S promoter and the kanamycin marker gene, was used in cells bombardment. Primary selection was done on a medium supplemented by 50 mg l?1 kanamycin. After several passages, the survived cells were PCR-tested to confirm the stability of transformation and then were found to exhibit β-glucuronidase (GUS) activity in comparison with the control cells. Southern hybridization of npt II probe with genomic DNA revealed stable integration of the cassette in three different positions in the genome. The whole process was successfully implemented as a pre-step to transform the algal cells by genes involved in lipid production pathway which will be carried out in our future studies.  相似文献   
74.
Pistachio fruit hull borer, Arimania komaroffi Ragonot (Lep.: Pyralidae), is one the most important pests of pistachio in Iran. The larvae spin web as well as bore into young fruits, and the infested fruits fall off the trees. The second-generation adult moths appear in August and September, and their offspring feed on the fruit hull. Results indicated the presence of α-amylase, α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase and some proteases in the digestive tract of the pest. Highest activities of α-amylase, α-glucosidase, β-glucosidase, α-galactosidase and β-galactosidase were at pH 10, 7, 7, 6 and pH 6, respectively. Highest activities of trypsin, chymotrypsin and elastase of larval midgut were at pH 11. Zymogram analysis of α-amylase, α-glucosidase, β-glucosidase, tryptic, chymotryptic and elastase using native-PAGE revealed 1, 1, 2, 3, 3 and 2 bands of activity respectively, in A. komaroffi. One band was disappeared in the presence of the inhibitor TLCK, but no further inhibition by the inhibitors TPCK was observed. The results can be of help for designing new strategies for controlling the pistachio fruit hull borer based on natural proteases and carbohydrase inhibitors.  相似文献   
75.
76.
In this research, electric field gradient (EFG), which is the first derivative of electric field, is applied for evaluation of aromaticity of 89 cyclic organic compounds. In our calculations, DFT procedure (b3lyp) with basis set 6-311++G** has been employed, and the obtained electronic structures and frequency test has been done for optimized geometries. The aromaticity evaluated for these compounds by EFG procedure is successfully compared with other well-known indices in literature, especially with nuclear independent chemical shift (NICS). These comparisons show that EFG method of assessment of aromaticity can be used as a rather valid procedure for this purpose. Flexibility and simplicity of EFG make this method a rather easy procedure for assessment of aromaticity. Since EFG method of aromaticity evaluation does not need specific programming and it can be done by known software such as Gaussian, therefore, the availability for everyone to calculate desired aromaticity by this method is one of attractive feature of it similar to NICS.  相似文献   
77.
Covalent immobilization of cationic antimicrobial peptides (CAPs) at sufficient density and distance from the solid matrix has been suggested as a successful strategy for the generation of biocidal surfaces. To test the hypothesis that the mode of peptide action is decisive for the selection of an appropriate tethering position on solid surfaces, melittin (MEL), a channel-forming peptide, buforin 2 (BUF2), a peptide able to translocate bacterial membranes without permeabilization and targeting nucleic acids, and tritrpticin (TP), described to be membrane-lytic and to have intracellular targets, were C- and N-terminally immobilized on TentaGel S NH(2) resin beads as model surface. The peptide termini were modified with aminooxyacetic acid (AOA) and coupled via oxime-forming ligation. The comparison of the activities of the three peptides and their AOA-modified analogues with a KLAL model peptide which permeabilizes membranes by a so-called "carpet-like" mode provided the following results: The peptides in solution state were active against Bacillus subtilis and Escherichia coli at micromolar concentrations. MEL and TP but not BUF2-derived peptides permeabilized the inner and outer membrane of E. coli and enhanced the permeability of lipid bilayers at concentrations around their antimicrobial values (MICs). Immobilization reduced peptide activity to millimolar MICs. The activity reduction for KLAL was independent of the tethering position and comparably low, as reflected by a low ratio of MIC(tethered)/MIC(free). In contrary, the pore-forming MEL was much less active when immobilized at the N-terminus compared with the C-terminally tethered peptide. C- and N-terminal TP tethering caused an identical but much pronounced activity decrease. The tethered BUF2 peptides were inactive at the tested concentrations suggesting that the peptides could not reach the intracellular targets. In conclusion, membrane active peptides seem to be most suitable for the generation of antimicrobial surfaces, but knowledge about their mode of membrane insertion and positioning is required to identify optimal tethering positions. The relationship between the mechanism of action and position of immobilization is highly relevant for the establishment of a general approach to obtain efficient biocidal solid matrices loaded with CAPs.  相似文献   
78.
79.
Cytotoxic small-molecule drugs have a major influence on the fate of antibody–drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号