首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   7篇
  2022年   2篇
  2021年   3篇
  2020年   8篇
  2019年   23篇
  2018年   8篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1999年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
91.
At the end of December 2019, a novel acute respiratory syndrome coronavirus 2 (SARS-CoV2) appeared as the third unheard of outbreak of human coronavirus infection in the 21st century. First, in Wuhan, China, the novel SARS-CoV2 was named by the World Health Organization (WHO), as 2019-nCOV (COVID-19), and spread extremely all over the world. SARS-CoV2 is transmitted to individuals by human-to-human transmission leading to severe viral pneumonia and respiratory system injury. SARS-CoV2 elicits infections from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome, and other organ destruction. There is a possibility of virus transmission from asymptomatic cases as active carriers, in addition to symptomatic ones, which is a crucial crisis of COVID-19 that should be considered. Hence, paying more attention to the accurate and immediate diagnosis of suspected and infected cases can be a great help in preventing the rapid spread of the virus, improving the disease prognosis, and controlling the pandemic. In this review, we provide a comprehensive and up-to-date overview of the different types of Clinical and Para-clinical diagnostic methods and their practical features, which can help understand better the applications and capacities of various diagnostic approaches for COVID-19 infected cases.  相似文献   
92.
The ongoing outbreak of the recently emerged 2019 novel coronavirus (nCoV), which has seriously threatened global health security, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high morbidity and mortality. Despite the burden of the disease worldwide, still, no licensed vaccine or any specific drug against 2019-nCoV is available. Data from several countries show that few repurposed drugs using existing antiviral drugs have not (so far) been satisfactory and more recently were proven to be even highly toxic. These findings underline an urgent need for preventative and therapeutic interventions designed to target specific aspects of 2019-nCoV. Again the major factor in this urgency is that the process of data acquisition by physical experiment is time-consuming and expensive to obtain. Scientific simulations and more in-depth data analysis permit to validate or refute drug repurposing opportunities predicted via target similarity profiling to speed up the development of a new more effective anti-2019-nCoV therapy especially where in vitro and/or in vivo data are not yet available. In addition, several research programs are being developed, aiming at the exploration of vaccines to prevent and treat the 2019-nCoV. Computational-based technology has given us the tools to explore and identify potentially effective drug and/or vaccine candidates which can effectively shorten the time and reduce the operating cost. The aim of the present review is to address the available information on molecular determinants in disease pathobiology modules and define the computational approaches employed in systematic drug repositioning and vaccine development settings for SARS-CoV-2.  相似文献   
93.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号