首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   25篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   16篇
  2018年   26篇
  2017年   8篇
  2016年   16篇
  2015年   14篇
  2014年   28篇
  2013年   13篇
  2012年   12篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   4篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1999年   1篇
  1991年   2篇
  1989年   1篇
  1981年   1篇
排序方式: 共有210条查询结果,搜索用时 156 毫秒
21.
In the present study, the effect of nanosized graphene oxide layer on thermal stability and biocompatibility of gold nanorods has been examined. The graphene oxide-wrapped gold nanorods were prepared by electrostatic interaction between negatively charged graphene oxide and positively charged nanorods. The resulting nanohybrids were then heated at different time intervals to 95 °C in a water bath to assess the effect of heat on the rods morphology. The structural changes in gold nanorods were monitored via UV-Vis spectroscopy measurements and transmission electron microscopy images. In similar experiments, the graphene oxide used to wrap gold nanorods was reduced by ascorbic acid in a 95 °C water bath. Our results indicate that while bare gold nanorods are highly vulnerable to elevated temperatures, graphene oxide and reduced graphene oxide-coated gold nanorods remain thermally stable with no structural changes. We also confirmed that the enhanced thermal stability is highly dependent on the concentration of deposited graphene oxide available on the surface of the gold nanorods. In addition, we performed an MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazoliumbromide) assay to make a comparison between the cytotoxicity of the nanohybrids and their primary building blocks on human dermal fibroblast cells as a normal cell line. We found evidence that graphene oxide can enhance the biocompatibility of the rods through covering toxic chemicals on the surface of them.
Graphical Abstract ?
  相似文献   
22.
23.
24.
Silk fibroin nanoparticles (SFNPs) as a natural polymer have been utilized in biomedical applications such as suture, tissue engineering‐based scaffolds, and drug delivery carriers. Since there is little data regarding the toxicity effects on different cells and tissues, we aimed to determine the toxicity mechanisms of SFNPs on human lymphocytes and monocytes based on reliable methods. Our results showed that SFNPs (0.5, 1, and 2 mg/mL) induced oxidative stress via increasing reactive oxygen species production, mitochondrial membrane potential (?Ψ) collapse, which was correlated to cytochrome c release and Adenosine diphosphate (ADP)/Adenosine tri phosphate (ATP) ratio increase as well as lysosomal as another toxicity mechanism, which led to cytosolic release of lysosomal digestive proteases, phosphor lipases, and apoptosis signaling. Taken together, these data suggested that SFNPs toxicity was associated with mutual mitochondrial/lysosomal cross‐talk and oxidative stress on human lymphocytes and monocytes with activated apoptosis signaling.  相似文献   
25.
26.
Designing protein sequences that can fold into a given structure is a well‐known inverse protein‐folding problem. One important characteristic to attain for a protein design program is the ability to recover wild‐type sequences given their native backbone structures. The highest average sequence identity accuracy achieved by current protein‐design programs in this problem is around 30%, achieved by our previous system, SPIN. SPIN is a program that predicts sequences compatible with a provided structure using a neural network with fragment‐based local and energy‐based nonlocal profiles. Our new model, SPIN2, uses a deep neural network and additional structural features to improve on SPIN. SPIN2 achieves over 34% in sequence recovery in 10‐fold cross‐validation and independent tests, a 4% improvement over the previous version. The sequence profiles generated from SPIN2 are expected to be useful for improving existing fold recognition and protein design techniques. SPIN2 is available at http://sparks-lab.org .  相似文献   
27.
28.
29.
This research investigated the use of single‐walled carbon nanotubes (SWNTs) as an additive to increase the permeability of a bacterial cell wall. Recombinant Escherichia coli BL21 (DE3) that expressed β‐lactamase were exposed to SWNTs under various levels of concentration and agitation. Activity of β‐lactamase in the culture fluid and transmission electron microscopy (TEM) were used to determine the amount of released protein, and visually examine the permeability enhancement of the cells. It was found that β‐lactamase release in the culture fluid occurred in a dose‐dependent manner with treatment by SWNTs and was also dependent on agitation rate. Based on TEM, this treatment successfully caused an increase in permeability without significant damage to the cell wall. Consequently, SWNTs can be used as an enhancement agent to cause the release of intracellular proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:654–657, 2017  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号