首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   11篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   18篇
  2011年   29篇
  2010年   31篇
  2009年   38篇
  2008年   25篇
  2007年   20篇
  2006年   29篇
  2005年   14篇
  2004年   8篇
  2003年   12篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1998年   10篇
  1997年   10篇
  1996年   10篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1984年   5篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有372条查询结果,搜索用时 15 毫秒
21.
Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long‐term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long‐lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes require experiments on decadal time scales. But decadal experiments by themselves may not be adequate because many of the slow processes have characteristic time scales much longer than experiments can be maintained. This article promotes a coordinated approach that combines long‐term, large‐scale global change experiments with process studies and modeling. Long‐term global change manipulative experiments, especially in high‐priority ecosystems such as tropical forests and high‐latitude regions, are essential to maximize information gain concerning future states of the earth system. The long‐term experiments should be conducted in tandem with complementary process studies, such as those using model ecosystems, species replacements, laboratory incubations, isotope tracers, and greenhouse facilities. Models are essential to assimilate data from long‐term experiments and process studies together with information from long‐term observations, surveys, and space‐for‐time studies along environmental and biological gradients. Future research programs with coordinated long‐term experiments, process studies, and modeling have the potential to be the most effective strategy to gain the best information on long‐term ecosystem dynamics in response to global change.  相似文献   
22.
The role played by abandoned nests of leaf‐cutting ants (Atta spp.) as a small‐scale disturbance regime that affects plant recruitment, species coexistence and forest regeneration remains poorly investigated. Here we examine whether abandoned nests of Atta cephalotes serve as regeneration niches and operate as particular plant recruitment habitats, favouring forest regeneration after ant activities cease and leading to the establishment of taxonomically/ecologically distinct plant assemblages. Soil properties, canopy openness, light availability and regenerating plant assemblages were evaluated across 18 nests and adjacent control plots in a large remnant of Atlantic Forest in north‐east Brazil from December 2004 to December 2005. Surprisingly, nests and control plots exhibited very similar light environments irrespective of nest age, but nest soils exhibited substantial reductions in carbon content (1.45 ± 0.24 vs. 1.79 ± 0.13%) and organic matter (2.50 ± 0.41 vs. 3.08 ± 0.23%), and proved to be much more resistant to penetration (30.57 ± 6.08 vs. 39.48 ± 7.53 mm). Functional signature of regenerating plant assemblages exhibited little variation across both habitat types, as they were dominated by pioneer, small‐seeded and vertebrate‐dispersed species. However, abandoned nests exhibited less dense, impoverished and more homogeneous regenerating plant assemblages at local and landscape scale; they clearly lacked nest‐dependent plant species and represented floristic subsets of the flora inhabiting the undisturbed forest. This recruitment bottleneck was transient in the long term because nest‐related effects ameliorated in older nests. Our results suggest that, unlike treefall gaps, abandoned nests represent temporary (relatively long‐lasting) islands of unsuitable substrate that reduce plant recruitment, retard forest regeneration, and fail in providing a special regeneration niche able to promote species coexistence and plant diversity.  相似文献   
23.
Agave tequilana Weber (Rigidae, Agavaceae), blue agave, is a native Mexican plant that has been associated with tequila since the 17th century. The tequila industry has matured over time and now has a geographical indication (Denominación de Origen; DOT). The tequila industry has grown substantially in the last 15 years (19.82% annual increase between 1995 and 2008), resulting in an increase in agave production and associated residue (leaves) and bagasse that can be used for second‐generation biofuels. At a time when the biofuel industry is undergoing unprecedented changes, with diversified demand and predictions of increased competitiveness, this paper presents a review of agave landraces that have been affected by tequila production but may be beneficial for a biofuel industry. Conventional botanical studies have revealed domestication syndromes in races related to blue agave (‘azul listado’, ‘sigüín’ and ‘pata de mula’) specifically for production of fructans in the plant core as would be expected in mezcal agaves (including those used for tequila). Some others, such as the ‘moraleño’ and ‘bermejo’ cultivars (Sisalanae) show domestication syndrome only in the fibers, while others, such as ‘chato,’A. americana L. subtilis (Americanae) show domestication syndrome in fructans and fibers and ‘zopilote,’A. rhodacantha (Rigidae) a relatively low domestication syndrome. No specimens of the cultivars named ‘mano larga’, ‘mano anchaque’ and ‘cucharo’ were found in the Tequila Region of Origin (Western Mexico). The genetic resources from landraces ignored by the tequila industry may be valuable for both ethanol production and conservation.  相似文献   
24.
25.
26.
The link between adaptive genetic variation, individual fitness and wildlife population dynamics is fundamental to the study of ecology and evolutionary biology. In this study, a Bayesian modelling approach was employed to examine whether individual variability at two major histocompatibility complex (MHC) class II loci (DQA and DRB) and eight neutral microsatellite loci explained variation in female reproductive success for wild populations of European brown hare (Lepus europaeus). We examined two aspects of reproduction: the ability to reproduce (sterility) and the number of offspring produced (fecundity). Samples were collected from eastern Austria, experiencing a sub‐continental climatic regime, and from Belgium with a more Atlantic‐influenced climate. As expected, reproductive success (both sterility and fecundity) was significantly influenced by age regardless of sampling locality. For Belgium, there was also a significant effect of DQA heterozygosity in determining whether females were able to reproduce (95% highest posterior density interval of the regression parameter [−3.64, −0.52]), but no corresponding effect was found for Austria. In neither region was reproduction significantly associated with heterozygosity at the DRB locus. DQA heterozygotes from both regions also showed a clear tendency, but not significantly so, to produce a larger number of offspring. Predictive simulations showed that, in Belgium, sub‐populations of homozygotes will have higher rates of sterile individuals and lower average offspring numbers than heterozygotes. No similar effect is predicted for Austria. The mechanism for the spatial MHC effect is likely to be connected to mate choice for increased heterozygosity or to the linkage of certain MHC alleles with lethal recessives at other loci.  相似文献   
27.
Radiocarbon signatures (Δ14C) of carbon dioxide (CO2) provide a measure of the age of C being decomposed by microbes or respired by living plants. Over a 2‐year period, we measured Δ14C of soil respiration and soil CO2 in boreal forest sites in Canada, which varied primarily in the amount of time since the last stand‐replacing fire. Comparing bulk respiration Δ14C with Δ14C of CO2 evolved in incubations of heterotrophic (decomposing organic horizons) and autotrophic (root and moss) components allowed us to estimate the relative contributions of O horizon decomposition vs. plant sources. Although soil respiration fluxes did not vary greatly, differences in Δ14C of respired CO2 indicated marked variation in respiration sources in space and time. The 14C signature of respired CO2 respired from O horizon decomposition depended on the age of C substrates. These varied with time since fire, but consistently had Δ14C greater (averaging ~120‰) than autotrophic respiration. The Δ14C of autotrophically respired CO2 in young stands equaled those expected for recent photosynthetic products (70‰ in 2003, 64‰ in 2004). CO2 respired by black spruce roots in stands >40 years old had Δ14C up to 30‰ higher than recent photosynthates, indicating a significant contribution of C stored at least several years in plants. Decomposition of O horizon organic matter made up 20% or less of soil respiration in the younger (<40 years since fire) stands, increasing to ~50% in mature stands. This is a minimum for total heterotrophic contribution, since mineral soil CO2 had Δ14C close to or less than those we have assigned to autotrophic respiration. Decomposition of old organic matter in mineral soils clearly contributed to soil respiration in younger stands in 2003, a very dry year, when Δ14C of soil respiration in younger successional stands dropped below those of the atmospheric CO2.  相似文献   
28.
Polewards expansions of species' distributions have been attributed to climate warming, but evidence for climate‐driven local extinctions at warm (low latitude/elevation) boundaries is equivocal. We surveyed the four species of butterflies that reach their southern limits in Britain. We visited 421 sites where the species had been recorded previously to determine whether recent extinctions were primarily due to climate or habitat changes. Coenonympha tullia had become extinct at 52% of study sites and all losses were associated with habitat degradation. Aricia artaxerxes was extinct from 50% of sites, with approximately one‐third to half of extinctions associated with climate‐related factors and the remainder with habitat loss. For Erebia aethiops (extinct from 24% of sites), approximately a quarter of the extinctions were associated with habitat and three‐quarters with climate. For Erebia epiphron, extinctions (37% of sites) were attributed mainly to climate with almost no habitat effects. For the three species affected by climate, range boundaries retracted 70–100 km northwards (A. artaxerxes, E. aethiops) and 130–150 m uphill (E. epiphron) in the sample of sites analysed. These shifts are consistent with estimated latitudinal and elevational temperature shifts of 88 km northwards and 98 m uphill over the 19‐year study period. These results suggest that the southern/warm range margins of some species are as sensitive to climate change as are northern/cool margins. Our data indicate that climate warming has been of comparable importance to habitat loss in driving local extinctions of northern species over the past few decades; future climate warming is likely to jeopardize the long‐term survival of many northern and mountain species.  相似文献   
29.
30.
The evolutionary potential in the timing of recruitment and reproduction may be crucial for the ability of populations to buffer against environmental changes, allowing them to avoid unfavourable breeding conditions. The evolution of a trait in a local population is determined by its heritability and selection. In the present study, we performed pedigree‐based quantitative genetic analyses for two life‐history traits (recruiting age and laying date) using population data of the storm petrel over an 18‐year period in two adjacent breeding colonies (only 150 m apart) that share the same environmental conditions. In both traits, natal colony effect was the main source of the phenotypic variation among individuals, and cohort variance for recruitment age and additive genetic variance for laying date were natal colony‐specific. We found significant heritability only in laying date and, more specifically, only in birds born in one of the colonies. The difference in genetic variance between the colonies was statistically significant. Interestingly, selection on earlier breeding birds was detected only in the colony in which heritable variation in laying date was found. Therefore, local evolvability for a life‐history trait may vary within a unexpectedly small spatial scale, through the diversifying natural selection and insulating gene flow. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 439–446.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号