首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   8篇
  2021年   1篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2004年   3篇
  2003年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有60条查询结果,搜索用时 311 毫秒
31.
32.
33.
The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis.In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.  相似文献   
34.
Arabidopsis thaliana was exposed to low-dose chronic gamma irradiation during a full life cycle (seed to seed) and several biological responses were investigated. Applied dose rates were 2336, 367 and 81 μGy h?1. Following 24 days (inflorescence emergence), 34 days (~50% of flowers open) and 54 days (silice ripening) exposure, plants were harvested and monitored for biometric parameters, capacities of enzymes involved in the antioxidative defence mechanisms (SOD, APOD, GLUR, GPOD, SPOD, CAT, ME), glutathione and ascorbate pool, lipid peroxidation products, altered gene expression of selected genes encoding for antioxidative enzymes or reactive oxygen species production, and DNA integrity. Root fresh weight was significantly reduced after gamma exposure compared to the control at all stages monitored but no significant differences in root weight for the different dose rates applied was observed. Leaf and stem fresh weight were significantly reduced at the highest irradiation level after 54 days exposure only. Also total plant fresh was significantly lower at silice riping and this for the highest and medium dose rate applied. The dose rate estimated to result in a 10% reduction in growth (EDR-10) ranged between 60 and 80 μGy h?1. Germination of seeds from the gamma irradiated plants was not hampered. For several of the antioxidative defence enzymes studied, the enzyme capacity was generally stimulated towards flowering but generally no significant effect of dose rate on enzyme capacity was observed. Gene analysis revealed a significant transient and dose dependent change in expression of RBOHC indicating active reactive oxygen production induced by gamma irradiation. No effect of irradiation was observed on concentration or reduction state of the non-enzymatic antioxidants, ascorbate and glutathione. The level of lipid peroxidation products remained constant throughout the observation period and was not affected by dose rate. The comet assay did not reveal any effect of gamma dose rate on DNA integrity.  相似文献   
35.
To better understand the response of a plant to O3 stress, an integrated microarray analysis was performed on Arabidopsis plants exposed during 2 days to purified air or 150 nl l−1 O3, 8 h day−1. Agilent Arabidopsis 2 Oligo Microarrays were used of which the reliability was confirmed by quantitative real-time PCR of nine randomly selected genes. We confirmed the O3 responsiveness of heat shock proteins (HSPs), glutathione- S -tranferases and genes involved in cell wall stiffening and microbial defence. Whereas, a previous study revealed that during an early stage of the O3 stress response, gene expression was strongly dependent on jasmonic acid and ethylene, we report that at a later stage (48 h) synthesis of jasmonic acid and ethylene was downregulated. In addition, we observed the simultaneous induction of salicylic acid synthesis and genes involved in programmed cell death and senescence. Also typically, the later stage of the response to O3 appeared to be the induction of the complete pathway leading to the biosynthesis of anthocyanin diglucosides and the induction of thioredoxin-based redox control. Surprisingly absent in the list of induced genes were genes involved in ASC-dependent antioxidation, few of which were found to be induced after 12 h of O3 exposure in another study. We discuss these and other particular results of the microarray analysis and provide a map depicting significantly affected genes and their pathways highlighting their interrelationships and subcellular localization.  相似文献   
36.
Effects of environmental dissolved organic matter (eDOM) that consists of various low concentration carbonic compounds on pollutant biodegradation by bacteria are poorly understood, especially when it concerns synergistic xenobiotic-degrading consortia where degradation depends on interspecies metabolic interactions. This study examines the impact of the quality and quantity of eDOM, supplied as secondary C-source, on the structure, composition and pesticide-degrading activity of a triple-species bacterial consortium in which the members synergistically degrade the phenylurea herbicide linuron, when grown as biofilms. Biofilms developing on 10 mg L?1 linuron showed a steady-state linuron degradation efficiency of approximately 85 %. The three bacterial strains co-localized in the biofilms indicating syntrophic interactions. Subsequent feeding with eDOM or citrate in addition to linuron resulted into changes in linuron-degrading activity. A decrease in linuron-degrading activity was especially recorded in case of co-feeding with citrate and eDOM of high quality and was always associated with accumulation of the primary metabolite 3,4-dichloroaniline. Improvement of linuron degradation was especially observed with more recalcitrant eDOM. Addition of eDOM/citrate formulations altered biofilm architecture and species composition but without loss of any of the strains and of co-localization. Compositional shifts correlated with linuron degradation efficiencies. When the feed was restored to only linuron, the linuron-degrading activity rapidly changed to the level before the mixed-substrate feed. Meanwhile only minor changes in biofilm composition and structure were recorded, indicating that observed eDOM/citrate effects had been primarily due to repression/stimulation of linuron catabolic activity rather than to biofilm characteristics.  相似文献   
37.
Background: Despite the high sensitivity and specificity of PCR, detection of Helicobacter pylori DNA in feces is still challenging. Fecal samples contain inhibitory molecules that can prevent amplification of the target DNA. Even by using specific DNA extraction kits for stools, monitoring of infection by analyzing stool samples remains problematic and endorses the need for improved diagnostic methods. Materials and Methods: The newly proposed method uses selective hybridization of target DNA with biotin‐labeled probes, followed by DNA isolation with streptavidin‐coated magnetic beads. After three washing steps, the purified DNA can be amplified immediately using conventional or quantitative PCR. In order to test this technique on biological samples, Mongolian gerbils were infected with H. pylori ATCC 43504 and fecal samples were analyzed on days 1, 4, and 10 post infection. Results: A detection limit of one bacterial cell per 100 mg stool sample was established, but only after removal of the magnetic beads from the target DNA by heating. This resulted in a 10‐fold increase of sensitivity compared to a commercially available stool DNA extraction kit. Analysis of fecal samples from infected gerbils demonstrated the presence of H. pylori DNA on each time point, while the uninfected animal remained negative. Conclusions: The proposed technique allows detection of very low quantities of H. pylori DNA in biological samples. In laboratory animal models, detailed monitoring of infection and complete clearance of infection can be demonstrated thanks to the low detection limit.  相似文献   
38.
When synthesizing molecularly imprinted polymers (MIPs), a few fundamental principles should be kept in mind. There is a strong correlation between porogen polarity, MIP microenvironment polarity and the imprinting effect itself. The combination of these parameters eventually determines the overall binding behavior of a MIP in a given solvent. In addition, it is shown that MIP binding is strongly influenced by the polarity of the rebinding solvent. Because the use of MIPs in biomedical environments is of considerable interest, it is important that these MIPs perform well in aqueous media. In this article, various approaches are explored towards a water compatible MIP for the target molecule l-nicotine. To this end, the imprinting effect together with the MIP matrix polarity is fine-tuned during MIP synthesis. The binding behavior of the resulting MIPs is evaluated by performing batch rebinding experiments that makes it possible to select the most suitable MIP/non-imprinted polymer couple for future application in aqueous environments. One method to achieve improved compatibility with water is referred to as porogen tuning, in which porogens of varying polarities are used. It is demonstrated that, especially when multiple porogens are mixed, this approach can lead to superior performance in aqueous environments. Another method involves the incorporation of polar or non-polar comonomers in the MIP matrix. It is shown that by carefully selecting these monomers, it is also possible to obtain MIPs, which can selectively bind their target in water.  相似文献   
39.
Background: The interest in non‐antibiotic therapies for Helicobacter pylori infections in man has considerably grown because increasing numbers of antibiotic‐resistant strains are being reported. Intervention at the stage of bacterial attachment to the gastric mucosa could be an approach to improve the control/eradication rate of this infection. Materials and Methods: Fractions of purified milk fat globule membrane glycoproteins were tested in vitro for their cytotoxic and direct antibacterial effect. The anti‐adhesive effect on H. pylori was determined first in a cell model using the mucus‐producing gastric epithelial cell line NCI‐N87 and next in the C57BL/6 mouse model after dosing at 400 mg/kg protein once or twice daily from day ?2 to day 4 post‐infection. Bacterial loads were determined by using quantitative real‐time PCR and the standard plate count method. Results: The milk fat globule membrane fractions did not show in vitro cytotoxicity, and a marginal antibacterial effect was demonstrated for defatted milk fat globule membrane at 256 μg/mL. In the anti‐adhesion assay, the results varied from 56.0 ± 5.3% inhibition for 0.3% crude milk fat globule membrane to 79.3 ± 3.5% for defatted milk fat globule membrane. Quite surprisingly, in vivo administration of the same milk fat globule membrane fractions did not confirm the anti‐adhesive effects and even caused an increase in bacterial load in the stomach. Conclusions: The promising anti‐adhesion in vitro results could not be confirmed in the mouse model, even after the highest attainable exposure. It is concluded that raw or defatted milk fat globule membrane fractions do not have any prophylactic or therapeutic potential against Helicobacter infection.  相似文献   
40.
Summary.  In cell suspension cultures of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) a rapid and concentration-dependent accumulation of H2O2 is induced by excess concentrations of copper (up to 100 μM). This specific and early response towards copper stress was shown to be extracellular. Addition of 300 U of catalase per ml decreased the level of H2O2. Superoxide dismutase (5 U/ml) induced an increase in H2O2 production by 22.2%. This indicates that at least part of the H2O2 is produced by dismutation of superoxide. Pretreatment of the cell cultures with the NAD(P)H oxidase inhibitors diphenylene iodonium (2 and 10 μM) and quinacrine (1 and 5 mM) prevented the generation of H2O2 under copper stress for 90%. The influence of the pH on the H2O2 production revealed the possible involvement of cell-wall-dependent peroxidases in the generation of reactive oxygen species after copper stress. Received May 20, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Plant Physiology, Department of Biology, University of Antwerp (RUCA), Groenenborgerlaan 171, 2020 Antwerp, Belgium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号