首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1184943篇
  免费   94393篇
  国内免费   96040篇
  2023年   7692篇
  2022年   8047篇
  2021年   8762篇
  2020年   9142篇
  2019年   11191篇
  2018年   11520篇
  2017年   7937篇
  2016年   9063篇
  2015年   10333篇
  2014年   13618篇
  2013年   12568篇
  2012年   107807篇
  2011年   121698篇
  2010年   29569篇
  2009年   21956篇
  2008年   102114篇
  2007年   106038篇
  2006年   99382篇
  2005年   94545篇
  2004年   91640篇
  2003年   86930篇
  2002年   77161篇
  2001年   62019篇
  2000年   77373篇
  1999年   32677篇
  1998年   7199篇
  1997年   5465篇
  1996年   4659篇
  1995年   4404篇
  1994年   4578篇
  1993年   3788篇
  1992年   4362篇
  1991年   3850篇
  1990年   3781篇
  1989年   4297篇
  1988年   4269篇
  1987年   3923篇
  1986年   3735篇
  1985年   3579篇
  1983年   3393篇
  1959年   3880篇
  1958年   6824篇
  1957年   6798篇
  1956年   6073篇
  1955年   5733篇
  1954年   5439篇
  1953年   5173篇
  1952年   4656篇
  1951年   4278篇
  1950年   3511篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
The initial step in tumor formation by Agrobacterium tumefaciens is the site-specific attachment of the bacteria to plant cells. A similar attachment to plant tissue culture cells has been observed. Binding to carrot suspension culture cells was not dependent on the presence of divalent cations and was not inhibited by the addition of mannose, α-methyl mannoside, galactose, arabinose, glucosamine, 2-deoxyglucose, or 0.25 molar NaCl to the culture medium. The ability of the carrot cells to bind A. tumefaciens was markedly reduced by elution of the cells with dilute detergent or CaCl2 or by incubation of the cells with proteolytic enzymes. The carrot cells were not killed by these treatments and recovered the ability to bind A. tumefaciens within 3 to 6 hours. A. tumefaciens did not bind to carrot cells which had been induced to form embryos (AG Matthysse, RHG Gurlitz 1982 Physiol Plant Pathol 21: 381-387). A comparison of the peptides eluted from embryos and from uninduced cells using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there were several changes in extractable polypeptides after embryo induction. One or more of the polypeptides present before embryo induction and absent from embryos may be involved in the binding of A. tumefaciens to the carrot cell surface.  相似文献   
902.
The phosphorylation of thylakoid proteins of rice (Oryza sativa L.) was studied in vitro using [γ-32P]ATP. Several thylakoid proteins are labeled, including the light-harvesting complex of photosystem II. Protein phosphorylation is sensitive to temperature, pH, and ADP, ATP, and divalent cation concentrations. In the range pH 7 to 8.2, phosphorylation of the light-harvesting polypeptides declines above pH 7.5, whereas labeling of several other thylakoid polypeptides increases. Increasing divalent cation concentration from 3 to 20 millimolar results in a decrease in phosphorylation of the 26 kilodalton light-harvesting complex polypeptide and increased phosphorylation of several other polypeptides. ADP has an inhibitory effect on the phosphorylation of the light-harvesting complex polypeptides. Phosphorylation of the 26 kilodalton light-harvesting polypeptide requires 0.45 millimolar ATP for half-maximal phosphorylation, compared to 0.3 millimolar for the 32 kilodalton phosphoprotein. Low temperature inhibits the phosphorylation of thylakoid proteins in chilling-sensitive rice. However, phosphorylation of histones by thylakoid-bound kinase(s) is independent of temperature in the range of 25 to 5°C, suggesting that the effect of low temperature is on accessibility of the substrate, rather than on the activity of the kinase.  相似文献   
903.
Vu JC  Allen LH  Bowes G 《Plant physiology》1987,83(3):573-578
Soybean (Glycine max [L.] cv Bragg) was grown at 330 or 660 microliters CO2 per liter in outdoor, controlled-environment chambers. When the plants were 50 days old, drought stress was imposed by gradually reducing irrigation each evening so that plants wilted earlier each succeeding day. On the ninth day, as the pots ran out of water CO2 exchange rate (CER) decreased rapidly to near zero for the remainder of the day. Both CO2-enrichment and drought stress reduced the total (HCO3/Mg2+-activated) extractable ribulose-1,5-bisphosphate carboxylase (RuBPCase) activity, as expressed on a chlorophyll basis. In addition, drought stress when canopy CER values and leaf water potentials were lowest, reduced the initial (nonactivated) RuBPCase activity by 50% compared to the corresponding unstressed treatments. This suggests that moderate to severe drought stress reduces the in vivo activation state of RuBPCase, as well as lowers the total activity. It is hypothesized that stromal acidification under drought stress causes the lowered initial RuBPCase activities. The Km(CO2) values of activated RuBPCase from stressed and unstressed plants were similar; 15.0 and 12.6 micromolar, respectively. RuBP levels were 10 to 30% lower in drought stressed as compared to unstressed treatments. However, RuBP levels increased from near zero at night to around 150 to 200 nanomoles per milligram chlorophyll during the day, even as water potentials and canopy CERs decreased. This suggests that the rapid decline in canopy CER cannot be attributed to drought stress induced limitations in the RuBP regeneration capability. Thus, in soybean leaves, a nonstomatal limitation of leaf photosynthesis under drought stress conditions appears due, in part, to a reduction of the in vivo activity of RuBPCase. Because initial RuBPCase activities were not reduced as much as canopy CER values, this enzymic effect does not explain entirely the response of soybean photosynthesis to drought stress.  相似文献   
904.
Specialized epidermal trichomes on the leaves of the epiphyte, Tillandsia paucifolia (Bromeliaceae) accumulate amino acids from solution. Simultaneous net uptake of 17 amino acids was determined using high performance liquid chromatography. Uptake occurs against concentration gradients at least as high as 104.  相似文献   
905.
Cauliflower mosaic virus (CaMV) replicated in protoplasts and in inoculated leaves of the non-host, cotton (Gossypium hirsutum, L.). Protoplasts prepared from suspension-cultured cotton cells were infected by incubation with liposome-encapsulated CaMV virions. During a 1-week culture period the amount of CaMV nucleic acid as detected by nucleic acid hybridization in the protoplasts increased significantly regardless of whether or not the protoplasts contained vacuoles. In leaves inoculated with CaMV virions or CaMV DNA, viral DNA sequences were found by leaf skeleton hybridization to be located in small circular areas. DNA extracted from ultracentrifugal pellets of homogenates of inoculated leaves contained circular, gapped CaMV DNA only when inocula contained CaMV virions, CaMV DNA, or partial nested dimer CaMV plasmid DNA. When plants had been heavily watered, the CaMV DNA recovered contained degraded CaMV DNA. The results suggest that the host range limitation for CaMV is not due to an inability to replicate or spread locally in inoculated leaves.  相似文献   
906.
The effects of fluoride on the tonoplast type ATPase and transport activities associated with sealed membrane vesicles isolated from sugarbeet (Beta vulgaris L.) storage tissue were examined. This anion had two distinct effects upon the proton-pumping vesicles. When ATP hydrolysis was measured in the presence of gramicidin D, significant inhibition (approximately 50%) only occurred when the fluoride concentration approached 50 millimolar. In contrast, the same degree of inhibition of proton transport occurred when the fluoride concentration was about 24 millimolar. Effects on proton pumping at this concentration of fluoride could be attributed to an inhibition of chloride movement which serves to dissipate the vesicle membrane potential. Valinomycin could partially restore ATPase activity in sealed vesicles which were inhibited by fluoride and this restoration occurred with a reduction in the membrane potential. Fluoride demonstrated a competitive interaction with chloride-stimulation of proton transport and inhibited the uptake of radioactive chloride into sealed vesicles. When the vesicles were allowed to develop a pH gradient in the absence of KCl, and KCl was subsequently added, fluoride reduced enhancement of the existing pH gradient by KCl. The results are consistent with a chloride carrier that is inhibited by fluoride.  相似文献   
907.
Chilling temperatures (5°C) and high irradiance (1000 microeinsteins per square meter per second) were used to induce photooxidation in detached leaves of cucumber (Cucumis sativus L.), a chilling-sensitive plant. Chlorophyll a, chlorophyll b, β carotene, and three xanthophylls were degraded in a light-dependent fashion at essentially the same rate. Lipid peroxidation (measured as ethane evolution) showed an O2 dependency. The levels of three endogenous antioxidants, ascorbate, reduced glutathione, and α tocopherol, all showed an irradiance-dependent decline. α-Tocopherol was the first antioxidant affected and appeared to be the only antioxidant that could be implicated in long-term protection of the photosynthetic pigments. Results from the application of antioxidants having relative selectivity for 1O2, O2, or OH indicated that both 1O2 and O2 were involved in the chilling- and light-induced lipid peroxidation which accompanied photooxidation. Application of D2O (which enhances the lifetime of 1O2) corroborated these results. Chilling under high light produced no evidence of photooxidative damage in detached leaves of chilling-resistant pea (Pisum sativum L.). Our results suggest a fundamental difference in the ability of pea to reduce the destructive effects of free-radical and 1O2 production in chloroplasts during chilling in high light.  相似文献   
908.
The susceptibility of photosynthesis to photoinhibition and the rate of its recovery were studied in the cyanobacterium Anacystis nidulans grown at a low (10 micromoles per square meter per second) and a high (120 micromoles per square meter per second) photosynthetically active radiation. The rate of light limited photosynthetic O2 evolution was measured to determine levels of photoinhibition and rates of recovery. Studies of photoinhibition and recovery with and without the translation inhibitor streptomycin demonstrated the importance of a recovery process for the susceptibility of photosynthesis to photoinhibition. We concluded that the approximately 3 times lower susceptibility to photoinhibition of high light than of low light grown cells, significantly depended on high light grown cells having an approximately 3 times higher recovery capacity than low light grown cells. It is suggested that these differences in susceptibility to photoinhibition and recovery depends on high light grown cells having a higher turnover rate of photosystem II protein(s) that is(are) the primary site(s) of photodamage, than have low light grown cells. Furthermore, we demonstrated that photoinhibition of A. nidulans may occur under physiological light conditions without visible harm to the growth of the cell culture. The results give support for the hypotheses that the net photoinhibitory damage of photosystem II results from the balance between the photoinhibitory process and the operation of a recovery process; the capacity of the latter determining significant differences in the susceptibility of photosynthesis to photoinhibition of high and low light grown A. nidulans.  相似文献   
909.
High Na+ concentrations may disrupt K+ and Ca2+ transport and interfere with growth of many plant species, cotton (Gossypium hirsutum L.) included. Elevated Ca2+ levels often counteract these consequences of salinity. The effect of supplemental Ca2+ on influx of Ca2+, K+, and Na+ in roots of intact, salt-stressed cotton seedlings was therefore investigated. Eight-day-old seedlings were exposed to treatments ranging from 0 to 250 millimolar NaCl in the presence of nutrient solutions containing 0.4 or 10 millimolar Ca2+. Sodium influx increased proportionally to increasing salinity. At high external Ca2+, Na+ influx was less than at low Ca2+. Calcium influx was complex and exhibited two different responses to salinity. At low salt concentrations, influx decreased curvilinearly with increasing salt concentration. At 150 to 250 millimolar NaCl, 45Ca2+ influx increased in proportion to salt concentrations, especially with high Ca2+. Potassium influx declined significantly with increasing salinity, but was unaffected by external Ca2+. The rate of K+ uptake was dependent upon root weight, although influx was normalized for root weight. We conclude that the protection of root growth from salt stress by supplemental Ca2+ is related to improved Ca-status and maintenance of K+/Na+ selectivity.  相似文献   
910.
Cation amelioration of aluminum toxicity in wheat   总被引:20,自引:9,他引:11       下载免费PDF全文
Aluminum is a major constituent of most soils and limits crop productivity in many regions. Amelioration is of theoretical as well as practical interest because understanding amelioration may contribute to an understanding of the mechanisms of toxicity. In the experiments reported here 2-day-old wheat (Triticum aestivum L. cv Tyler) seedlings with 15-millimeter roots were transferred to solutions containing 0.4 millimolar CaCl2 at pH 4.3 variously supplemented with AlCl3 and additional amounts of a chloride salt. Root lengths, measured after 2 days in the test solutions, were a function of both Al activity and the cation activity of the added salt. Percent inhibition = 100 {Al3+}/({Al3+} + Km + α{C}β) where {Al3+} is the activity of Al3+ expressed in micromolar, {C} is the activity of the added cation expressed in millimolar, and Km (= 1.2 micromolar) is the {Al3+} required for 50% inhibition in the absence of added salt. For Ca2+, Mg2+, and Na+ the values of α were 2.4, 1.6, and 0.011, respectively, and the values for β were 1.5, 1.5, and 1.8, respectively. With regard to relative ameliorative effectiveness, Ca2+ > Mg2+ ≈ Sr2+ K+ ≈ Na+. Other cations were tested, but La3+, Sc3+, Li+, Rb+, and Cs+ were toxic at potentially ameliorative levels. The salt amelioration is not solely attributable to reductions in {Al3+} caused by increases in ionic strength. Competition between the cation and Al for external binding sites may account for most of the amelioration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号