首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102671篇
  免费   6815篇
  国内免费   139篇
  2012年   11125篇
  2011年   12442篇
  2010年   1811篇
  2009年   949篇
  2008年   9275篇
  2007年   9673篇
  2006年   9106篇
  2005年   8489篇
  2004年   8268篇
  2003年   7807篇
  2002年   6574篇
  2001年   5165篇
  2000年   6756篇
  1999年   2675篇
  1998年   333篇
  1997年   230篇
  1996年   157篇
  1995年   169篇
  1994年   117篇
  1993年   113篇
  1992年   132篇
  1991年   114篇
  1990年   124篇
  1989年   103篇
  1988年   107篇
  1987年   100篇
  1986年   87篇
  1985年   83篇
  1984年   94篇
  1983年   78篇
  1982年   67篇
  1981年   43篇
  1979年   38篇
  1973年   34篇
  1972年   70篇
  1971年   64篇
  1970年   55篇
  1969年   40篇
  1959年   355篇
  1958年   733篇
  1957年   759篇
  1956年   647篇
  1955年   672篇
  1954年   655篇
  1953年   676篇
  1952年   661篇
  1951年   548篇
  1950年   439篇
  1949年   71篇
  1948年   69篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The remarkable resistance of the urinary tract to infection has been attributed to its physical properties and the innate immune responses triggered by pattern recognition receptors lining the tract. We report a distinct TLR4 mediated mechanism in bladder epithelial cells (BECs) that abrogates bacterial invasion, a necessary step for successful infection. Compared to controls, uropathogenic type 1 fimbriated Escherichia coli and Klebsiella pneumoniae invaded BECs of TLR4 mutant mice in 10-fold or greater numbers. TLR4 mediated suppression of bacterial invasion was linked to increased intracellular cAMP levels which negatively impacted Rac-1 mediated mobilization of the cytoskeleton. Artificially increasing intracellular cAMP levels in BECs of TLR4 mutant mice restored resistance to type 1 fimbriated bacterial invasion. This finding reveals a novel function for TLR4 and another facet of bladder innate defense.  相似文献   
992.
Yang G  Gao P  Zhang H  Huang S  Zheng ZL 《PloS one》2007,2(10):e1074
Root hair tip growth provides a unique model system for the study of plant cell polarity. Transgenic plants expressing constitutively active (CA) forms of ROP (Rho-of-plants) GTPases have been shown to cause the disruption of root hair polarity likely as a result of the alteration of actin filaments (AF) and microtubules (MT) organization. Towards understanding the mechanism by which ROP controls the cytoskeletal organization during root hair tip growth, we have screened for CA-rop2 suppressors or enhancers using CA1-1, a transgenic line that expresses CA-rop2 and shows only mild disruption of tip growth. Here, we report the characterization of a CA-rop2 enhancer (cae1-1 CA1-1) that exhibits bulbous root hairs. The cae1-1 mutation on its own caused a waving and branching root hair phenotype. CAE1 encodes the root hair growth-related, ARM domain-containing kinesin-like protein MRH2 (and thus cae1-1 was renamed to mrh2-3). Cortical MT displayed fragmentation and random orientation in mrh2 root hairs. Consistently, the MT-stabilizing drug taxol could partially rescue the wavy root hair phenotype of mrh2-3, and the MT-depolymerizing drug Oryzalin slightly enhanced the root hair tip growth defect in CA1-1. Interestingly, the addition of the actin-depolymerizing drug Latrunculin B further enhanced the Oryzalin effect. This indicates that the cross-talk of MT and AF organization is important for the mrh2-3 CA1-1 phenotype. Although we did not observe an apparent effect of the MRH2 mutation in AF organization, we found that mrh2-3 root hair growth was more sensitive to Latrunculin B. Moreover, an ARM domain-containing MRH2 fragment could bind to the polymerized actin in vitro. Therefore, our genetic analyses, together with cell biological and pharmacological evidence, suggest that the plant-specific kinesin-related protein MRH2 is an important component that controls MT organization and is likely involved in the ROP2 GTPase-controlled coordination of AF and MT during polarized growth of root hairs.  相似文献   
993.
Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.  相似文献   
994.
995.
Why is it hard to divide attention between dissimilar activities, such as reading and listening to a conversation? We used functional magnetic resonance imaging (fMRI) to study interference between simple auditory and visual decisions, independently of motor competition. Overlapping activity for auditory and visual tasks performed in isolation was found in lateral prefrontal regions, middle temporal cortex and parietal cortex. When the visual stimulus occurred during the processing of the tone, its activation in prefrontal and middle temporal cortex was suppressed. Additionally, reduced activity was seen in modality-specific visual cortex. These results paralleled impaired awareness of the visual event. Even without competing motor responses, a simple auditory decision interferes with visual processing on different neural levels, including prefrontal cortex, middle temporal cortex and visual regions.  相似文献   
996.
997.
Extracellular matrix molecules--including chondroitin sulfate proteoglycans, hyaluronan, and tenascin-R--are enriched in perineuronal nets (PNs) associated with subsets of neurons in the brain and spinal cord. In the present study, we show that similar cell type-dependent extracellular matrix aggregates are formed in dissociated cell cultures prepared from early postnatal mouse hippocampus. Starting from the 5th day in culture, accumulations of lattice-like extracellular structures labeled with Wisteria floribunda agglutinin were detected at the cell surface of parvalbumin-expressing interneurons, which developed after 2-3 weeks into conspicuous PNs localized around synaptic contacts at somata and proximal dendrites, as well as around axon initial segments. Physiological recording and intracellular labeling of PN-expressing neurons revealed that these are large fast-spiking interneurons with morphological characteristics of basket cells. To study mechanisms of activity-dependent formation of PNs, we performed pharmacological analysis and found that blockade of action potentials, transmitter release, Ca2+ permeable AMPA subtype of glutamate receptors or L-type Ca2+ voltage-gated channels strongly decreased the extracellular accumulation of PN components in cultured neurons. Thus, we suggest that Ca2+ influx via AMPA receptors and L-type channels is necessary for activity-dependent formation of PNs. To study functions of chondroitin sulfate-rich PNs, we treated cultures with chondroitinase ABC that resulted in a prominent reduction of several major PN components. Removal of PNs did not affect the number and distribution of perisomatic GABAergic contacts but increased the excitability of interneurons in cultures, implicating the extracellular matrix of PNs in regulation of interneuronal activity.  相似文献   
998.

Background

Attempts over the last three decades to reconstruct the phylogenetic history of the Anopheles gambiae species complex have been important for developing better strategies to control malaria transmission.

Methodology

We used fingerprint genotyping data from 414 field-collected female mosquitoes at 42 microsatellite loci to infer the evolutionary relationships of four species in the A. gambiae complex, the two major malaria vectors A. gambiae sensu stricto (A. gambiae s.s.) and A. arabiensis, as well as two minor vectors, A. merus and A. melas.

Principal Findings

We identify six taxonomic units, including a clear separation of West and East Africa A. gambiae s.s. S molecular forms. We show that the phylogenetic relationships vary widely between different genomic regions, thus demonstrating the mosaic nature of the genome of these species. The two major malaria vectors are closely related and closer to A. merus than to A. melas at the genome-wide level, which is also true if only autosomes are considered. However, within the Xag inversion region of the X chromosome, the M and two S molecular forms are most similar to A. merus. Near the X centromere, outside the Xag region, the two S forms are highly dissimilar to the other taxa. Furthermore, our data suggest that the centromeric region of chromosome 3 is a strong discriminator between the major and minor malaria vectors.

Conclusions

Although further studies are needed to elucidate the basis of the phylogenetic variation among the different regions of the genome, the preponderance of sympatric admixtures among taxa strongly favor introgression of different genomic regions between species, rather than lineage sorting of ancestral polymorphism, as a possible mechanism.  相似文献   
999.
To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号