首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185081篇
  免费   94409篇
  国内免费   96064篇
  2023年   7733篇
  2022年   8048篇
  2021年   8833篇
  2020年   9141篇
  2019年   11191篇
  2018年   11519篇
  2017年   7936篇
  2016年   9063篇
  2015年   10333篇
  2014年   13618篇
  2013年   12568篇
  2012年   107812篇
  2011年   121700篇
  2010年   29571篇
  2009年   21960篇
  2008年   102113篇
  2007年   106037篇
  2006年   99383篇
  2005年   94550篇
  2004年   91651篇
  2003年   86937篇
  2002年   77164篇
  2001年   62024篇
  2000年   77373篇
  1999年   32678篇
  1998年   7202篇
  1997年   5464篇
  1996年   4658篇
  1995年   4407篇
  1994年   4586篇
  1993年   3785篇
  1992年   4364篇
  1991年   3851篇
  1990年   3776篇
  1989年   4298篇
  1988年   4269篇
  1987年   3924篇
  1986年   3736篇
  1985年   3578篇
  1983年   3393篇
  1959年   3880篇
  1958年   6825篇
  1957年   6798篇
  1956年   6073篇
  1955年   5733篇
  1954年   5439篇
  1953年   5173篇
  1952年   4656篇
  1951年   4278篇
  1950年   3511篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
891.
Wu MX  Wedding RT 《Plant physiology》1987,85(2):497-501
The effect of temperature in the range from 10 to 35°C on various characteristics of phosphoenolpyruvate carboxylase from the leaves of a CAM plant, Crassula argentea and a C4 plant Zea mays shows a number of different effects related to the environment in which these distinct types of metabolic specialization normally operate. The Arrhenius plot of Vmax for the two enzyme forms shows that the CAM enzyme has a linear increase with temperature while the C4 enzyme has an inflection at 27°C implying a conformational or aggregational change in the enzyme or a shift in reaction mechanism to one requiring a lower activation energy. The Arrhenius plot of Km for the two enzymes reveals the startling fact that at temperatures above 20°C an increasing temperature causes an increase in KmPEP for the CAM enzyme while the C4 enzyme displays a decreased Km as the temperature increases. The inhibitory effect of 5 millimolar malate also shows opposite trends for the two enzymes. For the CAM enzyme the percent inhibition by malate increases from essentially none at 15°C to 70% at 35°C. For the C4 enzyme the percent inhibition drops from about 60% at 20°C to 2% at 30°C. Similar opposite behavior of the two enzymes is found with the Ki for malate. Pretreatment at high temperatures for periods up to 2 hours was found to result in differences similar to those described above if the treated enzyme were subsequently assayed at 25°C.  相似文献   
892.
psbA in Synechocystis 6803 was found to belong to a small multigene family with three copies. The psbA gene family was inactivated in vitro by insertation of bacterial drug resistance markers. Inactivation of all three genes resulted in a transformant that is unable to grow photosynthetically but can be cultured photoheterotrophically. This mutant lacks oxygen evolving capacity but retains photosystem I activity. Room temperature measurements of chlorophyll a fluorescence induction demonstrated that the transformant exhibits a high fluorescence yield with little or no variable fluorescence. Immunoblot analyses showed complete loss of the psbA gene product (the DI polypeptide) from thylakoid membranes in the transformant. However, the extrinsic 33 kilodalton polypeptide of the water-splitting complex of photosystem II, is still present. The results indicate that assembly of a partial photosystem II complex may occur even in the absence of the intrinsic D1 polypeptide, a protein implicated as a crucial component of the photosystem II reaction center.  相似文献   
893.
The rate and sensitivity to inhibitors (KCN and salicylhydroxamic acid[SHAM]) of respiratory oxygen uptake has been investigated in photosynthetic organs of several freshwater aquatic plant species: six angiosperms, two bryophytes, and an alga. The oxygen uptake rates on a dry weight basis of angiosperm leaves were generally higher than those of the corresponding stems. Leaves also had a higher chlorophyll content than stems. Respiration of leaves and stems of aquatic angiosperms was generally cyanide-resistant, the percentage of resistance being higher than 50% with very few exceptions. The cyanide resistance of respiration of whole shoots of two aquatic bryophytes and an alga was lower and ranged between 25 and 50%. These results suggested that the photosynthetic tissues of aquatic plants have a considerable alternative pathway capacity. The angiosperm leaves generally showed the largest alternative path capacity. In all cases, the respiration rate of the aquatic plants studied was inhibited by SHAM alone by about 13 to 31%. These results were used for calculating the actual activities of the cytochrome and alternative pathways. These activities were generally higher in the leaves of angiosperms. The basal oxygen uptake rate of Myriophyllum spicatum leaves was not stimulated by sucrose, malate or glycine in the absence of the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP), but was greatly increased by CCCP, either in the presence or in the absence of substrates. These results suggest that respiration was limited by the adenylate system, and not by substrate availability. The increase in the respiratory rate by CCCP was due to a large increase in the activities of both the cytochrome and alternative pathways. The respiration rate of M. spicatum leaves in the presence of substrates was little inhibited by SHAM alone, but the SHAM-resistant rate (that is, the cytochrome path) was greatly stimulated by the further addition of CCCP. Similarly, the cyanide-resistant rate of O2 uptake was also increased by the uncoupler.  相似文献   
894.
The two glutamate synthases, NAD(P)H- and ferredoxin-dependent, from the green leaves of tomato plants (Lycopersicon esculentum L. cv Hellfrucht frühstamm) differed in their chemical properties and catalytic behavior. Gel filtration of NAD(P)H enzyme gave an apparent molecular size of 158 kilodalton, whereas the ferredoxin enzyme molecular size was 141 kilodalton. Arrhenius plots of the activities of the two enzymes showed that the NAD(P)H enzyme had two activation energies; 109.6 and 70.5 kilojoule per mole; the transition temperature was 22°C. The ferredoxin enzyme however, had only one activation energy; 56.1 kilojoule per mole. The respective catalytic activity pH optima for the NAD(P)H- dependent and the ferredoxin dependent enzymes were around 7.3 and 7.8. In experiments to evaluate the effects of modulators aspartate enhanced the NAD(P)H-linked activity, with a Ka value of 0.25 millimolar, but strongly inhibited that of the ferredoxin-dependent glutamate synthase with a Ki of 0.1 millimolar. 3-Phosphoserine was another inhibitor of the ferredoxin dependent enzyme with a Ki value of 4.9 millimolar. 3-Phosphoglyceric acid was a potent inhibitor of the ferredoxin-dependent form, but hardly affected the NAD(P)H-dependent enzyme. The results are discussed and interpreted to propose different specific functions that these activities may have within the leaf tissue cell.  相似文献   
895.
Gas exchange measurements were made on plants from two natural populations differing in salt tolerance of Andropogon glomeratus, a C4 nonhalophyte, to examine the effect of salinity on components responsible for differences in photosynthetic capacity. Net CO2 uptake and stomatal conductance decreased with increasing salinity in both populations, but to a greater extent in the inland (nontolerant) population. The intercellular CO2 concentrations increased with increasing salinity in the inland population, but decreased in the marsh (tolerant) population. Water use efficiency decreased as salinity increased in the inland population, and remained unchanged in the marsh population. Carboxylation efficiency decreased and CO2 compensation points increased with increasing salinity in both populations, but to a lesser extent in the marsh population. Carboxylation efficiencies were higher with 2% relative to 21% atmospheric O2 in salt stressed plants, suggesting that a decrease in the carboxylation:oxygenation ratio of ribulose 1,5-bisphosphate carboxylase/oxygenase was partly responsible for the decrease in photosynthetic capacity. Populational differences in photosynthetic capacity were the result of greater salinity-induced changes in carboxylation efficiency in the inland population, and not due to differences in the stomatal limitation to CO2 diffusion.  相似文献   
896.
Freshly collected spores of strain Hn-n of Ceratopteris richardii Brongn. require storage for several months before attaining maximum germination rate. Treatments using (2-chloroethyl)phosphonic acid increased germination rate in freshly collected spores and decreased germination rate in older spores.  相似文献   
897.
A comparision of high (330 microeinsteins per meter squared per second) and low (80 microeinsteins per meter squared per second) light grown Gonyaulax polyedra indicated a change in the distribution of chlorophyll a, chlorophyll c2, and peridinin among detergent-soluble chlorophyll-protein complexes. Thylakoid fractions were prepared by sonication and centrifugation. Chlorophyll-protein complexes were solubilized from the membranes with sodium dodecyl sulfate and resolved by Deriphat electrophoresis. Low light cells yielded five distinct chlorophyll-protein complexes (I to V), while only four (I′ to IV′) were evident in preparations of high light cells. Both high molecular weight complexes I and I′ were dominated by chlorophyll a absorption and associated with minor amounts of chlorophyll c. Both complexes II and II′ were chlorophyll a-chlorophyll c2-protein complexes devoid of peridinin and unique to dinoflagellates. The chlorophyll a:c2 molar ratio of both complexes was 1:3, indicating significant chlorophyll c enrichment over thylakoid membrane chlorophyll a:c ratios of 1.8 to 2:1. Low light complex III differed from all other high or low light complexes in that it possessed peridinin and had a chlorophyll a:c2 ratio of 1:1. Low light complexes IV and V and high light complexes III′ and IV′ were spectrally similar, had high chlorophyll a:c2 ratios (4:1), and were associated with peridinin. The effects of growth irradiance on the composition of chlorophyll-protein complexes in Gonyaulax polyedra differed from those described for other chlorophyll c-containing plant species.  相似文献   
898.
An evaluation of the recycling in measurements of photorespiration   总被引:9,自引:5,他引:4       下载免费PDF全文
All measurements of photorespiration and gross photosynthesis in leaves, whether using isotopes or not, are underestimated because of the recycling of O2 or CO2. On the basis of a simple diffusion model, we propose a method for the calculation of the recycling and the corresponding underestimation of the measurements. This procedure can be applied when the stomatal resistance is known, and allows for a correction of certain results in the literature. It is found that measurements of the photorespiratory CO2 release are usually underestimated by 20 to 100%, which sets the estimated rate of CO2 photorespired at 30 to 50% of the net photosynthesis in C3 plants under normal conditions. In water stress studies, the correction of the photorespiration is still more important (1.5-3.3) because the stomata are closed more. Analysis of the diffusion of O2 shows that its recycling is low and that the underestimation of photorespiration with 18O2 is negligible.  相似文献   
899.
Changes in the physical state of microsomal membrane lipids during senescence of rose flower petals (Rosa hyb. L. cv Mercedes) were measured by x-ray diffraction analysis. During senescence of cut flowers held at 22°C, lipid in the ordered, gel phase appeared in the otherwise disordered, liquid-crystalline phase lipids of the membranes. This was due to an increase in the phase transition temperature of the lipids. The proportion of gel phase in the membrane lipids of 2-day-old flowers was estimated as about 20% at 22°C. Ethylene may be responsible, at least in part, for the increase in lipid transition temperature during senescence since aminooxyacetic acid and silver thiosulfate inhibited the rise in transition temperature. When flowers were stored at 3°C for 10 to 17 days and then transferrd to 22°C, gel phase lipid appeared in membranes earlier than in freshly cut flowers. This advanced senescence was the result of aging at 3°C, indicated by increases in membrane lipid transition temperature and ethylene production rate during the time at 3°C. It is concluded that changes in the physical state of membrane lipids are an integral part of senescence of rose petals, that they are caused, at least in part, by ethylene action and that they are responsible, at least in part, for the increase in membrane permeability which precedes flower death.  相似文献   
900.
The initial step in tumor formation by Agrobacterium tumefaciens is the site-specific attachment of the bacteria to plant cells. A similar attachment to plant tissue culture cells has been observed. Binding to carrot suspension culture cells was not dependent on the presence of divalent cations and was not inhibited by the addition of mannose, α-methyl mannoside, galactose, arabinose, glucosamine, 2-deoxyglucose, or 0.25 molar NaCl to the culture medium. The ability of the carrot cells to bind A. tumefaciens was markedly reduced by elution of the cells with dilute detergent or CaCl2 or by incubation of the cells with proteolytic enzymes. The carrot cells were not killed by these treatments and recovered the ability to bind A. tumefaciens within 3 to 6 hours. A. tumefaciens did not bind to carrot cells which had been induced to form embryos (AG Matthysse, RHG Gurlitz 1982 Physiol Plant Pathol 21: 381-387). A comparison of the peptides eluted from embryos and from uninduced cells using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there were several changes in extractable polypeptides after embryo induction. One or more of the polypeptides present before embryo induction and absent from embryos may be involved in the binding of A. tumefaciens to the carrot cell surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号