首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   42篇
  国内免费   68篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2015年   1篇
  2014年   6篇
  2013年   12篇
  2012年   59篇
  2011年   53篇
  2010年   11篇
  2009年   2篇
  2008年   58篇
  2007年   60篇
  2006年   49篇
  2005年   66篇
  2004年   49篇
  2003年   40篇
  2002年   42篇
  2001年   22篇
  2000年   38篇
  1999年   26篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   10篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   4篇
  1959年   1篇
  1958年   4篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1952年   6篇
  1951年   2篇
  1950年   1篇
  1937年   1篇
排序方式: 共有659条查询结果,搜索用时 15 毫秒
61.
We describe novel peptide-based caspase inhibitors. Potent and comparatively selective compounds containing a dipeptide scaffold and a substituted oxymethyl ketone as a warhead were developed. The newly synthesized compounds were tested for inhibition in in vitro enzymatic assays of caspases-1, -3, -6, -8, and -9. The benzyloxycarbonyl-phenylglycyl-aspartyl benzoyloxymethyl ketone (Z-Phg-Asp-CH2OCO-Ph, coded as HU44) was the most potent inhibitor of caspase-1 and caspase-3. Of several analogs of HU44 that were made, the beta-Asp methyl ester (2) is an effective inhibitor against caspase-3 and caspase-8, and less effective against caspase-1. These compounds did not inhibit caspase-6 and caspase-9 significantly.  相似文献   
62.
After infection with Borrelia burgdorferi, humans and mice under certain conditions develop arthritis. Initiation of inflammation is dependent on the migration of innate immune cells to the site of infection, controlled by interactions of a variety of adhesion molecules. In this study, we used the newly synthesized compound S18407, which is a prodrug of the active drug S16197, to analyze the functional importance of alpha4beta1-dependent cell adhesion for the development of arthritis and for the antibacterial immune response. S16197 is shown to interfere specifically with the binding of alpha4beta(1 integrin to its ligands VCAM-1 and fibronectin in vitro. Treatment of B. burgdorferi-infected C3H/HeJ mice with the alpha4beta1 antagonist significantly ameliorated the outcome of clinical arthritis and the influx of neutrophilic granulocytes into ankle joints. Furthermore, local mRNA up-regulation of the proinflammatory mediators IL-1, IL-6, and cyclooxygenase-2 was largely abolished. Neither the synthesis of spirochete-specific Igs nor the development of a Th1-dominated immune response was altered by the treatment. Importantly, the drug also did not interfere with Ab-mediated control of spirochete load in the tissues. These findings demonstrate that the pathogenesis, but not the protective immune response, in Lyme arthritis is dependent on the alpha4beta1-mediated influx of inflammatory cells. The onset of inflammation can be successfully targeted by treatment with S18407.  相似文献   
63.
Leptin regulates food intake as well as metabolic, endocrine, and immune functions. It exerts proliferative and antiapoptotic activities in a variety of cell types, including T cells. Leptin also stimulates macrophages and neutrophils, and its production is increased during inflammation. In this study, we demonstrate that human neutrophils express leptin surface receptors under in vitro and in vivo conditions, and that leptin delays apoptosis of mature neutrophils in vitro. The antiapoptotic effects of leptin were concentration dependent and blocked by an anti-leptin receptor mAb. The efficacy of leptin to block neutrophil apoptosis was similar to G-CSF. Using pharmacological inhibitors, we obtained evidence that leptin initiates a signaling cascade involving PI3K- and MAPK-dependent pathways in neutrophils. Moreover, leptin delayed the cleavage of Bid and Bax, the mitochondrial release of cytochrome c and second mitochondria-derived activator of caspase, as well as the activation of both caspase-8 and caspase-3 in these cells. Taken together, leptin is a survival cytokine for human neutrophils, a finding with potential pathologic relevance in inflammatory diseases.  相似文献   
64.
Dendritic cells (DC) initiate immunity and maintain tolerance. Although in vitro-generated DC, usually derived from peripheral blood monocytes (MO-DC), serve as prototype DC to analyze the biology and biochemistry of DC, phenotypically distinct primary types of DC, including CD1c-DC, are present in peripheral blood (PB-DC). The composition of lysosomal proteases in PB-DC and the way their MHC class II-associated Ag-processing machinery handles a clinically relevant Ag are unknown. We show that CD1c-DC lack significant amounts of active cathepsins (Cat) S, L, and B as well as the asparagine-specific endopeptidase, the major enzymes believed to mediate MHC class II-associated Ag processing. However, at a functional level, lysosomal extracts from CD1c-DC processed the multiple sclerosis-associated autoantigens myelin basic protein and myelin oligodendrocyte glycoprotein in vitro more effectively than MO-DC. Although processing was dominated by CatS, CatD, and asparagine-specific endopeptidase in MO-DC, it was dominated by CatG in CD1c-DC. Thus, human MO-DC and PB-DC significantly differ with respect to their repertoire of active endocytic proteases, so that both proteolytic machineries process a given autoantigen via different proteolytic pathways.  相似文献   
65.
66.
67.
N-terminal pyroglutamate (pGlu) formation from glutaminyl precursors is a posttranslational event in the processing of bioactive neuropeptides such as thyrotropin-releasing hormone and neurotensin during their maturation in the secretory pathway. The reaction is facilitated by glutaminyl cyclase (QC), an enzyme highly abundant in mammalian brain. Here, we describe for the first time that human and papaya QC also catalyze N-terminal glutamate cyclization. Surprisingly, the enzymatic Glu(1) conversion is favored at pH 6.0 while Gln(1) conversion occurs with an optimum at pH 8.0. This unexpected finding might be of importance for deciphering the events leading to deposition of highly toxic pyroglutamyl peptides in amyloidotic diseases.  相似文献   
68.
69.
70.
Solar UV light induces a variety of DNA lesions in the genome. Enhanced cleavage of such base modifications by topoisomerase II has been demonstrated in vitro, but it is unclear what will arise from an interplay of these mechanisms in the genome of a living cell exposed to UV light. To address this question, we have subjected cells expressing biofluorescent topoisomerase IIalpha or IIbeta to DNA base modifications inflicted by a UVA laser at 364 nm through a confocal microscope in a locally confined manner. At DNA sites thus irradiated, we observed rapid, long term (>90 min) accumulation of topoisomerase IIalpha and IIbeta, which was accompanied by a decrease in mobility but not immobilization of the enzyme. The catalytic topoisomerase II inhibitor ICRF-187 prevented the effect when added to the cell culture before the UVA pulse but promoted it when added thereafter. Self-primed in situ extension with rhodamine-dUTP revealed massive DNA breakage at the UVA-exposed spot. Culturing the cells with ICRF-187 before UVA-exposure prevented such breaks. In conclusion, we show in a living cell nucleus that UVA-modified DNA is preferentially targeted and processed by topoisomerase IIalpha and IIbeta. This results in increased levels of topoisomerase II-mediated DNA breaks, but formation of immobile, stable topoisomerase II.DNA intermediates is not notably promoted. Inhibition of topoisomerase II activity by ICRF-187 greatly diminishes UVA-induced DNA breakage, implying topoisomerase IIalpha and IIbeta as endogenous co-factors modulating and possibly aggravating the impact of UVA light on the genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号