首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   13篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   10篇
  2011年   6篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   7篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1978年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
101.
Changes in isoprene emission (Φisoprene), and foliage photosynthetic (A) rates, isoprene precursor dimethylallyldiphosphate (DMADP), and nitrogen and carbon contents were studied from late summer to intensive leaf fall in Populus tremula to gain insight into the emission controls by temperature and endogenous, senescence-induced, modifications. Methanol emissions, characterizing degradation of cell wall pectins, were also measured. A rapid reduction in Φisoprene and A of 60–70% of the initial value was observed in response to a rapid reduction of ambient temperature by ca. 15°C (cold stress). Later phases of senescence were associated with further reductions in Φisoprene and A, with simultaneous major decrease in nitrogen content. However, during episodes of temperature increase, A and in particular, Φisoprene partly recovered. Variation in Φisoprene during senescence was correlated with average temperature of preceding days, with the highest degree of explained variance observed with average temperature of 6 days. Throughout the study, methanol emissions were small, but a large burst of methanol emission was associated with leaf yellowing and abscission. Overall, these data demonstrate that the capacity for isoprene emission can adjust to environmental conditions in senescing leaves as well, but the responsiveness is low compared with mid-season and is also affected by stress.  相似文献   
102.
? Premise of the study: Leaf-margin state (toothed vs. untoothed) forms the basis of several popular methods for reconstructing temperature. Some potential confounding factors have not been investigated with large data sets, limiting our understanding of the adaptive significance of leaf teeth and their reliability to reconstruct paleoclimate. Here we test the strength of correlations between leaf-margin state and deciduousness, leaf thickness, wood type (ring-porous vs. diffuse-porous), height within community, and several leaf economic variables. ? Methods: We assembled a trait database for 3549 species from six continents based on published and original data. The strength of associations between traits was quantified using correlational and principal axes approaches. ? Key results: Toothed species, independent of temperature, are more likely to be deciduous and to have thin leaves, a high leaf nitrogen concentration, a low leaf mass per area, and ring-porous wood. Canopy trees display the highest sensitivity between leaf-margin state and temperature; subcanopy plants, especially herbs, are less sensitive. ? Conclusions: Our data support hypotheses linking the adaptive significance of teeth to leaf thickness and deciduousness (in addition to temperature). Toothed species associate with the "fast-return" end of the leaf economic spectrum, providing another functional link to thin leaves and the deciduous habit. Accounting for these confounding factors should improve climate estimates from tooth-based methods.  相似文献   
103.
Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in saplings of Populus tremula L. An one-dimensional diffusion model was used to gain insight into the importance of key anatomical traits in determining g(m) . Leaf development was associated with increases in dry mass per unit area, thickness, density, exposed mesophyll (S(mes) /S) and chloroplast (S(c) /S) to leaf area ratio, internal air space (f(ias) ), cell wall thickness and chloroplast dimensions. Development of S(mes) /S and S(c) /S was delayed under low light. Reduction in light availability was associated with lower S(c) /S, but with larger f(ias) and chloroplast thickness. Water stress reduced S(c) /S and increased cell wall thickness under high light. In all treatments, g(m) and A(n) increased and CO(2) drawdown because of g(m) , C(i) -C(c) , decreased with increasing leaf age. Low light and drought resulted in reduced g(m) and A(n) and increased C(i) -C(c) . These results emphasize the importance of g(m) and its components in determining A(n) variations during leaf development and in response to stress.  相似文献   
104.
Controversial evidence of CO2‐responsiveness of isoprene emission has been reported in the literature with the response ranging from inhibition to enhancement, but the reasons for such differences are not understood. We studied isoprene emission characteristics of hybrid aspen (Populus tremula x P. tremuloides) grown under ambient (380 μmol mol?1) and elevated (780 μmol mol?1) [CO2] to test the hypothesis that growth [CO2] effects on isoprene emission are driven by modifications in substrate pool size, reflecting altered light use efficiency for isoprene synthesis. A novel in vivo method for estimation of the pool size of the immediate isoprene precursor, dimethylallyldiphosphate (DMADP) and the activity of isoprene synthase was used. Growth at elevated [CO2] resulted in greater leaf thickness, more advanced development of mesophyll and moderately increased photosynthetic capacity due to morphological “upregulation”, but isoprene emission rate under growth light and temperature was not significantly different among ambient‐ and elevated‐[CO2]‐grown plants independent of whether measured at 380 μmol mol?1 or 780 μmol mol?1 CO2. However, DMADP pool size was significantly less in elevated‐[CO2]‐grown plants, but this was compensated by increased isoprene synthase activity. Analysis of CO2 and light response curves of isoprene emission demonstrated that the [CO2] for maximum isoprene emission was shifted to lower [CO2] in elevated‐[CO2]‐grown plants. The light‐saturated isoprene emission rate (Imax,Q) was greater, but the quantum efficiency at given Imax,Q was less in elevated‐[CO2]‐grown plants, especially at higher CO2 measurement concentration, reflecting stronger DMADP limitation at lower light and higher [CO2]. These results collectively demonstrate important shifts in light and CO2‐responsiveness of isoprene emission in elevated‐[CO2]‐acclimated plants that need consideration in modeling isoprene emissions in future climates.  相似文献   
105.
Aim To test whether the onset of spring growth in European shrublands is advanced in response to the warmer conditions projected for the next two decades by climate models, and, if there is a change, whether it differs across Europe. Location The studied sites spanned a broad north–south European gradient with average annual temperatures (8.2–15.6 °C) and precipitation (511–1427 mm). Methods ‘Bud break’ was monitored in eight shrub and grass species in six European sites under control and experimentally warmer conditions generated by automatic roofs covering vegetation during the night. Results Species responsive to increased temperatures were Vaccinium myrtillus and Empetrum nigrum in Wales, Deschampsia flexuosa in Denmark, Calluna vulgaris in Netherlands, Populus alba in Hungary and Erica multiflora in Spain. Although the acceleration of spring growth was the commonest response to warming treatments, the responses at each site were species specific and year dependent. Under experimental warming 25% of cases exhibited a significantly earlier onset of the growing season and 10% had a significantly delayed onset of vegetative growth. No geographical gradient was detected in the experimental warming effects. However, there was a trend towards a greater dominance of phenological advances with more intense the warming treatments. Above 0.8 °C warming, only advancements were recorded. Main conclusions Our results show that warmer temperatures projected for the next decades have substantial potential effects on the phenology of the spring growth of dominant species in different European shrublands, with a dominant trend towards advancements the more intense the warming is. However, our study also demonstrates the overall difficulties of applying simple predictive relationships to extrapolate the effects of global change on phenology. Various combinations of environmental factors occur concurrently at different European sites and the interactions between different drivers (e.g. water and chilling) can alter phenology significantly.  相似文献   
106.
107.
108.
Leaf gas-exchange and chemical composition were investigated in seedlings of Quercus suber L. grown for 21 months either at elevated (700 μmol mol–1) or normal (350 μmol mol–1) ambient atmospheric CO2 concentrations, [CO2], in a sandy nutrient-poor soil with either ‘high’ N (0.3 mol N m–3 in the irrigation solution) or with ‘low’ N (0.05 mol N m–3) and with a constant suboptimal concentration of the other macro- and micronutrients. Although elevated [CO2] yielded the greatest total plant biomass in ‘high’ nitrogen treatment, it resulted in lower leaf nutrient concentrations in all cases, independent of the nutrient addition regime, and in greater nonstructural carbohydrate concentrations. By contrast, nitrogen treatment did not affect foliar N concentrations, but resulted in lower phosphorus concentrations, suggesting that under lower N, P use-efficiency in foliar biomass production was lower. Phosphorus deficiency was evident in all treatments, as photosynthesis became CO2 insensitive at intercellular CO2 concentrations larger than ≈ 300 μmol mol–1, and net assimilation rates measured at an ambient [CO2] of 350 μmol mol–1 or at 700 μmol mol–1 were not significantly different. Moreover, there was a positive correlation of foliar P with maximum Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) carboxylase activity (Vcmax), which potentially limits photosynthesis at low [CO2], and the capacities of photosynthetic electron transport (Jmax) and phosphate utilization (Pmax), which are potentially limiting at high [CO2]. None of these potential limits was correlated with foliar nitrogen concentration, indicating that photosynthetic N use-efficiency was directly dependent on foliar P availability. Though the tendencies were towards lower capacities of potential limitations of photosynthesis in high [CO2] grown specimens, the effects were statistically insignificant, because of (i) large within-treatment variability related to foliar P, and (ii) small decreases in P/N ratio with increasing [CO2], resulting in balanced changes in other foliar compounds potentially limiting carbon acquisition. The results of the current study indicate that under P-deficiency, the down-regulation of excess biochemical capacities proceeds in a similar manner in leaves grown under normal and elevated [CO2], and also that foliar P/N ratios for optimum photosynthesis are likely to increase with increasing growth CO2 concentrations. Symbols: A, net assimilation rate (μmol m–2 s–1); Amax, light-saturated A (μmol m–2 s–1); α, initial quantum yield at saturating [CO2] and for an incident Q (mol mol–1); [CO2], atmospheric CO2 concentration (μmol mol–1); Ci, intercellular CO2 concentration (μmol mol–1); Ca, CO2 concentration in the gas-exchange cuvette (μmol mol–1); FB, fraction of leaf N in ‘photoenergetics’; FL, fraction of leaf N in light harvesting; FR, fraction of leaf N in Rubisco; Γ*, CO2 compensation concentration in the absence of Rd (μmol mol–1); Jmax*, capacity for photosynthetic electron transport; Jmc, capacity for photosynthetic electron transport per unit cytochrome f (mol e[mol cyt f]–1 s–1); Kc, Michaelis-Menten constant for carboxylation (μmol mol–1); Ko, Michaelis-Menten constant for oxygenation (mmol mol–1); MA, leaf dry mass per area (g m–2); O, intercellular oxygen concentration (mmol mol–1); [Pi], concentration of inorganic phosphate (mM); Pmax*, capacity for phosphate utilization; Q, photosynthetically active quantum flux density (μmol m–2 s–1); Rd*, day respiration (CO2 evolution from nonphotorespiratory processes continuing in the light); Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RUBP, ribulose-1,5-bisphosphate; Tl, leaf temperature (°C); UTPU*, rate of triose phosphate utilization; Vcmax*, maximum Rubisco carboxylase activity; Vcr, specific activity of Rubisco (μmol CO2[g Rubisco]–1 s–1] *given in either μmol m–2 s–1 or in μmol g–1 s–1 as described in the text.  相似文献   
109.
The global modelling of photosynthesis is based on exact knowledge of the leaf photosynthetic machinery. The capacities of partial reactions of leaf photosynthesis develop at different rates, but it is not clear how the development of photoreactions and the Calvin cycle are co-ordinated. We investigated the development of foliar photosynthesis in the temperate deciduous tree Betula pendula Roth. using a unique integrated optical/gas exchange methodology that allows simultaneous estimation of photosystem I and II (PS I and PS II) densities per leaf area, interphotosystem electron transport activities, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic properties. We combined these measurements with in vitro determinations of Rubisco, soluble protein and chlorophyll contents. We observed a strong increase in leaf photosynthetic capacity in developing leaves per leaf area, as well as per dry mass, that was paralleled by accumulation of leaf Rubisco. Enhanced mesophyll conductance was the outcome of increased carboxylation capacity and increased CO(2) diffusion conductance. However, Rubisco was only partly activated in the leaves, according to in vivo measurements of Rubisco kinetics. The amount of active Rubisco increased in proportion with development of PS I, probably through a direct link between Rubisco activase and PS I electron transport. Since the kinetics for post-illumination P700 re-reduction did not change, the synthesis of cytochrome b(6)f complex was also proportional to PS I. The synthesis of PS II began later and continued for several days after reaching the full PS I activity, but leaf chlorophyll was shared equally between the photosystems. Due to this, the antenna of PS II was very large and not optimally organized, leading to greater losses of excitation and lower quantum yields in young leaves. We conclude that co-ordinated development of leaf photosynthesis is regulated at the level of PS I with subordinated changes in PS II content and Rubisco activation.  相似文献   
110.
There is a strong natural light gradient from the top to the bottom in plant canopies and along gap-understorey continua. Leaf structure and photosynthetic capacities change close to proportionally along these gradients, leading to maximisation of whole canopy photosynthesis. However, other environmental factors also vary within the light gradients in a correlative manner. Specifically, the leaves exposed to higher irradiance suffer from more severe heat, water, and photoinhibition stresses. Research in tree canopies and across gap-understorey gradients demonstrates that plants have a large potential to acclimate to interacting environmental limitations. The optimum temperature for photosynthetic electron transport increases with increasing growth irradiance in the canopy, improving the resistance of photosynthetic apparatus to heat stress. Stomatal constraints on photosynthesis are also larger at higher irradiance because the leaves at greater evaporative demands regulate water use more efficiently. Furthermore, upper canopy leaves are more rigid and have lower leaf osmotic potentials to improve water extraction from drying soil. The current review highlights that such an array of complex interactions significantly modifies the potential and realized whole canopy photosynthetic productivity, but also that the interactive effects cannot be simply predicted as composites of additive partial environmental stresses. We hypothesize that plant photosynthetic capacities deviate from the theoretical optimum values because of the interacting stresses in plant canopies and evolutionary trade-offs between leaf- and canopy-level plastic adjustments in light capture and use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号