首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1246篇
  免费   34篇
  国内免费   44篇
  1324篇
  2025年   3篇
  2024年   14篇
  2023年   32篇
  2022年   22篇
  2021年   35篇
  2020年   38篇
  2019年   43篇
  2018年   30篇
  2017年   41篇
  2016年   46篇
  2015年   61篇
  2014年   58篇
  2013年   75篇
  2012年   56篇
  2011年   70篇
  2010年   50篇
  2009年   69篇
  2008年   56篇
  2007年   59篇
  2006年   61篇
  2005年   49篇
  2004年   30篇
  2003年   39篇
  2002年   27篇
  2001年   29篇
  2000年   25篇
  1999年   22篇
  1998年   21篇
  1997年   15篇
  1996年   19篇
  1995年   21篇
  1994年   6篇
  1993年   17篇
  1992年   15篇
  1991年   11篇
  1990年   5篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   9篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   1篇
  1971年   1篇
排序方式: 共有1324条查询结果,搜索用时 0 毫秒
1.
The temporal availability of propagules is a critical factor in sustaining pioneer riparian tree populations along snowmelt-driven rivers because seedling establishment is strongly linked to seasonal hydrology. River regulation in semi-arid regions threatens to decouple seed development and dispersal from the discharge regime to which they evolved. Using the lower Tuolumne River as a model system, we quantified and modeled propagule availability for Populus fremontii (POFR), Salix gooddingii (SAGO), and Salix exigua (SAEX), the tree and shrub species that dominate near-channel riparian stands in the San Joaquin Basin, CA. A degree-day model was fit to field data of seasonal seed density and local temperature from three sites in 2002–2004 to predict the onset of the peak dispersal period. To evaluate historical synchrony of seed dispersal and seasonal river hydrology, we compared peak spring runoff timing to modeled peak seed release periods for the last 75 years. The peak seed release period began on May 15 for POFR (range April 23–June 10), May 30 for SAGO (range May 19–June 11) and May 31 for SAEX (range May 8–June 30). Degree-day models for the onset of seed release reduced prediction error by 40–67% over day-of-year means; the models predicted best the interannual, versus site-to-site, variation in timing. The historical analysis suggests that POFR seed release coincided with peak runoff in almost all years, whereas SAGO and SAEX dispersal occurred during the spring flood recession. The degree-day modeling approach reduce uncertainty in dispersal timing and shows potential for guiding flow releases on regulated rivers to increase riparian tree recruitment at the lowest water cost.  相似文献   
2.
Synopsis The seasonal transmission ofRaphidascaris acus was studied in two small lakes on Manitoulin Island, Ontario. Dragonfly nymphs and caddisfly larvae, acting as paratenic hosts, contained second-stage larvae. Several fishes, including percids and cyprinids, were intermediate hosts with second, third, and fourth-stage larvae in the liver. Yellow perch,Perca flavescens, was the most important of these. Intensities were up to 928 and increased with length and age of the perch; prevalence was 100%. Abundance ofR. acus tended to be higher in females but was not related to condition of the perch. Second-stage larvae were acquired from invertebrates in summer and developed to the fourth stage by November. They became surrounded by fibrous capsules during the next summer but remained alive for at least another year. The longevity of larvae in the intermediate host may ensure survival of the parasite through periods of low host abundance after winterkill. Northern pike,Esox lucius, was the definitive host. Abundance ofR. acus tended to be greater in larger pike but was not related to sex or condition of the fish. The parasite was acquired in late fall. Prevalence was 100% and mean intensities were over 200 in winter and spring, declining to 64–100% and less than 15, respectively, in summer. Mature worms were present from early spring through summer. Seasonality of infection in the definitive host is not attributable to seasonal availability of larvae in perch. Instead it may be controlled by timing of predation on perch and rate of development and longevity of the parasite. Transmission to pike apparently continues in summer. Low intensity may result from low recruitment rate and rapid turnover of the parasite population.  相似文献   
3.
There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance.  相似文献   
4.
    
  • Crop wild relatives are fundamental genetic resources for crop improvement. Wheat wild relatives often produce heteromorphic seeds that differ in morphological and physiological traits. Several Aegilops and Triticum species possess, within the same spikelet, a dimorphic seed pair, with one seed being larger than the other. A comprehensive analysis is needed to understand which traits are involved in seed dimorphism and if these aspects of variation in dimorphic pairs are functionally related.
  • To this end, dispersal units of Triticum urartu and five Aegilops species were X‐rayed and the different seed morphs weighed. Germination tests were carried out on seeds, both dehulled and left in their dispersal units. Controlled ageing tests were performed to detect differences in seed longevity among seed morphs, and the antioxidant profile was assessed in terms of antioxidant compounds equipment and expression of selected antioxidant genes. We used PCA to group seed morphs sharing similar patterns of germination traits, longevity estimates and antioxidant profile.
  • Different seed morphs differed significantly in terms of mass, final germination, germination timing, longevity estimates and antioxidant profile in most of the tested species. Small seeds germinated slower, had lower germination when left in their dispersal units, a higher antioxidant potential and were longer‐lived than large seeds. The antioxidant gene expression varied between morphs, with different patterns across species but not clearly reflecting the phenotypic observations.
  • The results highlight different trait trade‐offs in dimorphic seeds of Aegilops and T. urartu, affecting their germination phenology and longevity, thereby resulting in recruitment niche differentiation.
  相似文献   
5.
  总被引:2,自引:0,他引:2  
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   
6.
Leaf morphology, longevity, and demography were examined in Quercus ilex and Phillyrea latifolia growing in a holm oak forest in Prades mountains (northeast Spain). Four plots (10 × 15 m) of this forest were submitted to an experimental drought during three years (soil moisture was reduced about 15 %). Leaf area, thickness and leaf mass per area ratio (LMA) were measured in sun and shade leaves of both species. Leaf longevity, the mean number of current-year shoots produced per previous-year shoot (Sn/Sn-1), the mean number of current-year leaves per previous-year shoot (Ln/Sn-1), and the percentage of previous-year shoots that developed new ones were measured once a year, just after leaf flushing. LMA and leaf thickness increased since leaf unfolding except in summer periods, when stomatal closure imposed low photosynthetic rates and leaves consumed their reserves. LMA, leaf area, and leaf thickness were higher in Q. ilex than in P. latifolia, but leaf density was higher in the latter species. Drought reduced the leaf thickness and the LMA of both species ca. 2.5 %. Drought also increased leaf shedding up to ca. 20 % in Phillyrea latifolia and decreased it up to ca. 20 % in Q. ilex. In the later species, Sn/Sn-1 decreased by 32 %, Ln/Sn-1 by 41 %, percentage of shoots developed new ones by 26 %, and leaf area by 17 %. Thus the decrease of leaf number and area was stronger in the less drought-resistant Q. ilex, which, under increasingly drier conditions, might lose its current competitive advantage in these Mediterranean holm oak forests.  相似文献   
7.
Abstract:  Experiments were conducted in the laboratory and in greenhouses. Of three neem preparations sprayed upon eggs, only neem oil (NO) exerted a negative impact on the hatching rate of Coccinella septempunctata and Chrysoperla carnea . First instar larvae of Episyrphus balteatus proved to be highly susceptible, when feeding 24 h on aphids sprayed with neem kernel water extract (NKWE). First instar larvae of C. septempunctata showed a very high mortality when feeding on aphids sprayed with different neem preparations. Aphid feeding and live span was reduced. When NKWE had been applied to the soil, the mortality of larvae of E. balteatus and C. septempunctata were lower, when feeding on aphids. Second instar larvae of C. septempunctata were far less susceptible when feeding 48 h on neem-sprayed aphids than first instars; the time of their development was prolonged, and aphid consumption reduced. Larvae of C. carnea proved to be less susceptible, when feeding on neem-sprayed aphids, than E. balteatus and C. septempunctata . In C. carnea , however, significant influences were also observed in aphid consumption, time of development, mortality, longevity, and rate of deformity. NO, containing a very low concentration of azadirachtin A, had stronger negative effects than NeemAzal-T/S®, in all observations. In the parasitoid Diaeretiella rapae , NKWE application to the soil induced negative reactions, when aphids on these plants were parasitized: low percentage parasitization, lowered mummy weight, low emergence rate of adults of F1 and even of F2. Foliar sprays of NKWE had less severe effects in this parasitoid species. The results are discussed with regard to their theoretical and practical significance.  相似文献   
8.
Background and Aims Vitamin E helps to control the cellular redox state by reacting with singlet oxygen and preventing the propagation of lipid peroxidation in thylakoid membranes. Both plant ageing and phosphorus deficiency can trigger accumulation of reactive oxygen species, leading to damage to the photosynthetic apparatus. This study investigates how phosphorus availability and vitamin E interact in the control of plant longevity in the short-lived annual Arabidopsis thaliana.Methods The responses of tocopherol cyclase (VTE1)- and γ-tocopherol methyltransferase (VTE4)-null mutants to various levels of phosphorus availability was compared with that of wild-type plants. Longevity (time from germination to rosette death) and the time taken to pass through different developmental stages were determined, and measurements were taken of photosynthetic efficiency, pigment concentration, lipid peroxidation, vitamin E content and jasmonate content.Key Results The vte1 mutant showed accelerated senescence under control conditions, excess phosphorus and mild phosphorus deficiency, suggesting a delaying, protective effect of α-tocopherol during plant senescence. However, under severe phosphorus deficiency the lack of α-tocopherol paradoxically increased longevity in the vte1 mutant, while senescence was accelerated in wild-type plants. Reduced photoprotection in vitamin E-deficient mutants led to increased levels of defence chemicals (as indicated by jasmonate levels) under severe phosphorus starvation in the vte4 mutant and under excess phosphorus and mild phosphorus starvation in the vte1 mutant, indicating a trade-off between the capacity for photoprotection and the activation of chemical defences (jasmonate accumulation).Conclusions Vitamin E increases plant longevity under control conditions and mild phosphorus starvation, but accelerates senescence under severe phosphorus limitation. Complex interactions are revealed between phosphorus availability, vitamin E and the potential to synthesize jasmonates, suggesting a trade-off between photoprotection and the activation of chemical defences in the plants.  相似文献   
9.
The crown architectures of 11 Psychotria species native to Barro Colorado Island, Panama were reconstructed from field measurements of leaf and branch geometry with the three-dimensional simulation model Y-plant. The objective was to assess the role of species differences in architecture in light capture and carbon gain in their natural understory environment. When species were grouped according to their putative light environment preference, the shade tolerant species were found to have a small but significantly higher efficiency of light capture for both diffuse and direct light as compared to the light demanding species. Within each grouping, however, there were few significant differences in light capture efficiency among species. The lower efficiencies of light demanding species was due to slightly higher self-shading and slightly lower angular efficiencies. Simulations of whole plant assimilation showed that light demanding species had greater daily assimilation in both direct and diffuse light due to the significantly greater light availability in the sites where light demanding species were found, as compared to those where shade tolerant species occurred. Among light demanding species, the above ground relative growth rate measured over a 1-year period by applying allometric equations for mass versus linear dimensions, was positively correlated with diffuse PFD and with mean daily assimilation estimated from Y-plant. For the shade tolerant plants, there was no significant correlation between RGR and mean daily assimilation or with any measure of light availability, probably because they occurred over a much narrower range of light environments. Overall, the results reveal a strong convergence in light capture efficiencies among the Psychotria species at lower values than previously observed in understory plants using similar approaches. Constraints imposed by other crown functions such as hydraulics and biomechanical support may place upper limits on light capture efficiency.Abbreviations Ea Efficiency of light absorption (dimensionless) - Eadir Efficiency of direct light absorption (dimensionless) - Eadif Efficiency of diffuse light absorption (dimensionless) - DE Display efficiency (dimensionless) - PE Projection efficiency (dimensionless) - CosI Mean cosine of incidence (dimensionless) - aLARe Effective leaf area ratio (m2 g–1) - Atot Daily assimilation (mmol m–2 day–1) - Adir Daily assimilation in direct PFD (mmol m–2 day–1) - Adif Daily assimilation in diffuse PFD (mmol m–2 day–1)  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号