首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7433篇
  免费   949篇
  国内免费   742篇
  2024年   20篇
  2023年   177篇
  2022年   123篇
  2021年   268篇
  2020年   392篇
  2019年   404篇
  2018年   350篇
  2017年   370篇
  2016年   327篇
  2015年   327篇
  2014年   370篇
  2013年   447篇
  2012年   359篇
  2011年   345篇
  2010年   352篇
  2009年   398篇
  2008年   479篇
  2007年   527篇
  2006年   439篇
  2005年   370篇
  2004年   299篇
  2003年   267篇
  2002年   268篇
  2001年   222篇
  2000年   218篇
  1999年   180篇
  1998年   174篇
  1997年   111篇
  1996年   71篇
  1995年   71篇
  1994年   52篇
  1993年   59篇
  1992年   45篇
  1991年   24篇
  1990年   28篇
  1989年   20篇
  1988年   18篇
  1987年   23篇
  1986年   20篇
  1985年   16篇
  1984年   13篇
  1983年   6篇
  1982年   17篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   10篇
  1977年   8篇
  1976年   3篇
  1973年   4篇
排序方式: 共有9124条查询结果,搜索用时 15 毫秒
1.
2.
3.
1. The ability to achieve optimal camouflage varies between microhabitats in heterogeneous environments, potentially restricting individuals to a single habitat or imposing a compromise on crypsis to match several habitats. However, animals may exhibit morphological and behavioural attributes that enhance crypsis in different habitats. 2. We used an undescribed fish species, Galaxias‘nebula’, to investigate two objectives. First, we examined two potential methods of enhancing crypsis: change in colour pattern and selection of a suitable background. Second, we characterised the colour pattern of this unstudied fish and assessed its capacity for crypsis. 3. No background selection was apparent but the area of dark pigment expressed varied between backgrounds, which may negate the requirement to be choosy about habitats. The capacity to change colour and selection of a background that maximises crypsis are most likely separate, non‐mutually exclusive strategies. 4. Galaxias‘nebula’ exhibits polymorphic, non‐interchangeable colour patterns that have elements of both background pattern matching and disruptive colouration. This, coupled with habitat characteristics, suggests a combination of generalist and specialist strategies of habitat use. The fish’s camouflage strategy and air‐breathing ability may be key to survival under increasing pressure from habitat degradation and invasive predators.  相似文献   
4.
  1. Urban areas are often considered to be a hostile environment for wildlife as they are highly fragmented and frequently disturbed. However, these same habitats can contain abundant resources, while lacking many common competitors and predators. The urban environment can have a direct impact on the species living there but can also have indirect effects on their parasites and pathogens. To date, relatively few studies have measured how fine‐scale spatial heterogeneity within urban landscapes can affect parasite transmission and persistence.
  2. Here, we surveyed 237 greenspaces across the urban environment of Edinburgh (UK) to investigate how fine‐scale variation in socio‐economic and ecological variables can affect red fox (Vulpes vulpes) marking behavior, gastrointestinal (GI) parasite prevalence, and parasite community diversity.
  3. We found that the presence and abundance of red fox fecal markings were nonuniformly distributed across greenspaces and instead were dependent on the ecological characteristics of a site. Specifically, common foraging areas were left largely unmarked, which indicates that suitable resting and denning sites may be limiting factor in urban environments. In addition, the amount of greenspace around each site was positively correlated with overall GI parasite prevalence, species richness, and diversity, highlighting the importance of greenspace (a commonly used measure of landscape connectivity) in determining the composition of the parasite community in urban areas.
  4. Our results suggest that fine‐scale variation within urban environments can be important for understanding the ecology of infectious diseases in urban wildlife and could have wider implication for the management of urban carnivores.
  相似文献   
5.
1. It is hypothesised that ecological restoration in grasslands can induce an alternative stable state shift in vegetation. The change in vegetation influences insect community assemblages and allows for greater functional redundancy in pollination and refuge for native insect species. 2. Insect community assemblages at eight coastal California grassland sites were evaluated. Half of these sites had undergone restoration through active revegetation of native grassland flora and half were non‐restored. Insects were collected from Lupinus bicolor (Fabaceae) within 2 × 2‐m2 plots in spring 2017. Lupinus bicolor is a common native species that is used in California restoration projects, and home and state landscaping projects. 3. Ordination demonstrated that insect community assemblages were different between restored and non‐restored sites. These differences were seen in insect functional groups as well as taxa‐specific differences and were found to be driven by environmental characteristics such as non‐native forb cover. 4. Functional redundancy of herbivores decreased at restored sites, while pollinators became more redundant compared with non‐restored sites. The assemblages of the common species found at restoration sites contained more native insects than those found at non‐restored sites, including species such as Bombus vosnesenskii. 5. Local grassland restoration has the potential to induce an alternative stable state change and affect insect community assemblages. Additionally, it was found that grassland restoration can be a potential conservation tool to provide refugia for bumblebees (Bombus), but additional studies are required to fully understand its broader applicability.  相似文献   
6.
7.
Ecology of juvenile grouse during the transition to adulthood   总被引:1,自引:0,他引:1  
  相似文献   
8.
A set of eight simple ecological and social principles is proposed that could enhance the understanding of what constitutes fish 'habitat' and, if implemented, could contribute to improved management and conservation strategies. The habitat principles are a small, interrelated sub‐set that may be coupled with additional ones to formulate comprehensive guidelines for management and conservation strategies. It is proposed that: 1) habitat can be created by keystone species and interactions among species; 2) the productivity of aquatic and riparian habitat is interlinked by reciprocal exchanges of material; 3) the riparian zone is fish habitat; 4) fishless headwater streams are inseparable from fish‐bearing rivers downstream; 5) habitats can be coupled – in rivers, lakes, estuaries and oceans, and in time; 6) habitats change over hours to centuries; 7) fish production is dynamic due to biocomplexity, in species and in habitats; 8) management and conservation strategies must evolve in response to present conditions, but especially to the anticipated future. It is contended that the long‐term resilience of native fish communities in catchments shared by humans depends on incorporating these principles into management and conservation strategies. Further, traditional strategies poorly reflect the dynamic nature of habitat, the true extent of habitat, or the intrinsic complexity in societal perspectives. Forward‐thinking fish management and conservation plans view habitat as more than water. They are multilayered, ranging from pools to catchments to ecoregions, and from hours to seasons to centuries. They embrace, as a fundamental premise, that habitat evolves through both natural and anthropogenic processes, and that patterns of change may be as important as other habitat attributes.  相似文献   
9.
1. Despite the growing view that biodiversity provides a unifying theme in river ecology, global perspectives on richness in riverine landscapes are limited. As a result, there is little theory or quantitative data on features that might have influenced global patterns in riverine richness, nor are there clear indications of which riverine landscapes are important to conservation at the global scale. As conspicuous elements of the vertebrate fauna of riverine landscapes, we mapped the global distributions of all of the world's specialist riverine birds and assessed their richness in relation to latitude, altitude, primary productivity and geomorphological complexity (surface configuration). 2. Specialist riverine birds, typical of high‐energy riverine landscapes and dependent wholly or partly on production from river ecosystems, occur in 16 families. They are represented by an estimated 60 species divided equally between the passerines and non‐passerines. Major radiation has occurred among different families on different continents, indicating that birds have evolved several times into the niches provided by riverine landscapes. 3. Continental richness varies from four species in Europe to 28 in Asia, with richness on the latter continent disproportionately larger than would be expected from a random distribution with respect to land area. Richness is greatest in mountainous regions at latitudes of 20–40°N in the riverine landscapes of the Himalayan mountains, where 13 species overlap in range. 4. Family, genus and species richness in specialist riverine birds all increase significantly with productivity and surface configuration (i.e. relief). However, family richness was the best single predictor of the numbers of species or genera. In keeping with the effect of surface configuration, river‐bird richness peaks globally at 1300–1400 m altitude, and most species occur typically on small, fast rivers where they feed predominantly on invertebrates. Increased lengths of such streams in areas of high relief and rainfall might have been responsible for species–area effects. 5. We propose the hypothesis that the diversity in channel forms and habitats in riverine landscapes, in addition to high temperature and primary productivity, have been prerequisites to the development of global patterns in the richness of specialist riverine organisms. We advocate tests of this hypothesis in other taxonomic groups. We draw attention, however, to the challenges of categorically defining riverine organisms in such tests because (i) rivers grade into many other habitat types across several different ecotones and (ii) `terrestrialisation' processes in riverine landscapes means that they offer habitat for organisms whose evolutionary origins are not exclusively riverine.  相似文献   
10.
Body size and area‐incidence relationships: is there a general pattern?   总被引:1,自引:0,他引:1  
Aim This paper tests firstly for the existence of a general relationship between body size of terrestrial animals and their incidence across habitat patches of increasing size, and secondly for differences in this relationship between insects and vertebrates. Location The analysis was based on the occupancy pattern of 50 species from 15 different landscapes in a variety of ecosystems ranging from Central European grassland to Asian tropical forest. Methods The area‐occupancy relationship was described by incidence functions that were calculated using logistic regression. A correlation analysis between body size of the species and the patch area referring to the two given points of the incidence function was performed. In order to test for an effect of taxon (insects vs. vertebrates), an analysis of covariance was conducted. Results In all species, the incidence was found to increase with increasing patch area. The macroecological analysis showed a significant relationship between the incidence in habitat patches and the body size of terrestrial animals. The area requirement was found to increase linearly with increasing body size on a log‐log scale. This relationship did not differ significantly between insects and vertebrates. Conclusions The approach highlighted in this paper is to associate incidence functions with body size. The results suggest that body size is a general but rather rough predictor for the area requirements of animals. The relationship seems valid for a wide range of body sizes of terrestrial animals. However, further studies including isolation of habitats as well as additional species traits into the macroecological analysis of incidence functions are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号