首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   6篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   5篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   8篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1997年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有84条查询结果,搜索用时 125 毫秒
1.
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25 years, and lack of auto-antibodies. It accounts for 2–5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil.  相似文献   
2.
Control Analysis has been carried out in the first steps of a rat liver glycolytic system. Attention has been focused on the effect of several glucose concentrations on the control, particularly regarding the role of glucokinase. From kinetic studies of the whole metabolic system we have obtained information on the flux variation under different glucose concentrations. This information together with the kinetics of glucokinase has allowed us to calculate Flux Control and Elasticity Coefficients for glucokinase and the Response Coefficient of the system with respect to glucose. The changes in of the value of Flux Control Coefficients demonstrates that in conditions of low glucose concentration, glucokinase is the main enzyme in controlling the flux through the pathway, but at high glucose concentration the control moves to phosphofructokinase. Next, we have compared our results with those obtained with the shortening and titration method, previously described (Torres, N.V., Mateo, F., Mélendez-Hevia, E. and Kacser, H., (1986) Biochem. J. 234, 169–174; Torres, N.V. and Meléndez-Hevia, E. 1991. Molec. Cell. Biochem. 101, 1–10). Furthermore, from knowledge of the enzyme kinetics of the system we have been able to build a model of the pathway that allows us computer similation of its behavior and calculation of the Flux Control Coefficient profile at different glucose concentrations. By the three methods the results correlate, supporting the use of the pathway substrate as external modulator of the metabolic system as a tool for practical application of Control Analysis.  相似文献   
3.
Partially purified preparations of the hepatic glucokinase from C3H/He and C58 inbred mice have been used to explore the molecular basis for the observed twofold difference in activity between the strains. The single codominant gene that appears to regulate activity, the alleles of which are designated Gka and Gkb, respectively, for the two strains, could represent a structural gene change. This now seems unlikely because the mouse enzyme, although showing small differences from rat glucokinase, appeared to be identical in the two strains with respect to thermal stability, electrophoretic mobility in agarose gels, and kinetic properties such as the apparent K m values for MgATP2– and glucose and the unique cooperative interaction with the latter substrate. The enzymes also reacted identically in a range of immunological tests (double-diffusion, immunoelectrophoresis, immune precipitation and immune inhibition assays) and ELISA immune inhibition assays indicated that the twofold difference in activity was due to a similar difference in antigenically active enzyme. Genetic control over the physiologically significant regulation of enzyme amount is therefore probable.This work has been supported in part by a grant from the British Diabetic Association and a Training Studentship to PAJ from the Medical Research Council (U.K.).  相似文献   
4.
The ratio of activities of 6-phosphogluconate dehydrogenase/glucose-6-phosphate dehydrogenase measured in liver extracts of rats in lipogenic nutritional conditions is only 0.2, suggesting an apparent physiological unbalance between the two dehydrogenases of the hexosemonophosphate shunt. This potential unbalance is enhanced by the fact that TPNH is a more powerful competitive inhibitor of 6-phosphogluconate dehydrogenase than of glucose-6-phosphate dehydrogenase. Accordingly, a strong activation of 6-phosphogluconate dehydrogenase would be required for efficient functioning of this pathway, unless there is an alternative outlet for 6-phosphogluconate so far unrecognized in animal tissues.  相似文献   
5.
KIBENGE, MOLLY T AND CATHERINE B CHAN. Identification of biochemical defects in pancreatic islets of fa/fa rats: a developmental study. Obes Res. 1995;3:171–178. Adult obese (fa/fa) Zucker rats hypersecrete insulin in response to glucose and other secretagogues. Functional changes in islet ot2-adrenoceptors (8) and glycolytic regulation (9) have been reported. In this study, the development of these biochemical lesions in islets isolated from suckling (3 week old) and weanling (5 week old) lean and fa/fa rats was investigated and compared to results in adult animals. Glucose (15 mM)-induced insulin secretion was inhibited by mannoheptulose (MH) in lean (n=8) but not fa/fa (n=10) adult rats, indicating loss of sensitivity of glucokinase to competitive inhibition. Sensitivity to MH was somewhat reduced in the islets of 3- and 5-week-old fa/fa (n=7 and 12) compared to lean (n=15 and 9) rats, requiring 30–100 fold higher concentrations to achieve significant inhibition. At 3 weeks of age fa/fa rats did not differ from lean controls in either islet insulin content or body weight, but both parameters were increased in fa/fa rats by 5 weeks. The presence of altered α2-adrenoceptor function in fa/fa rats could not be confirmed in this study. Unlike the previous report, prazosin did not antagonize α2-agonist mediated inhibition of insulin secretion. The presence of defective regulation of the glycolytic pathway by mannoheptulose in suckling and weanling rats may contribute to development of hyperinsulinemia in fa/fa rats.  相似文献   
6.
Glucokinase in bird liver: a membrane bound enzyme   总被引:3,自引:0,他引:3  
There have been numerous reports that liver of birds contain only isoenzymes of the low KM hexokinases, but lack the high KM glucokinase. We describe here the presence of glucokinase in livers of chicken and Japanese quail. The enzyme is membrane bound and is solubilized by vigorous mechanical disruption of the tissue. With gentle homogenization the glucokinase is recovered upon centrifugation in the 1000g pellet, from which it may be liberated by prolonged sonication. It appears to be localized in the cell plasma membrane. The activities of hexokinase and glucokinase appear to be about equal in liver parenchyma of fed chicken, but in that of Japanese quail the activity of glucokinase exceeds greatly that of hexokinase.  相似文献   
7.
8.

Objective

Proteoglycan 4 (Prg4) has emerged from human association studies as a possible factor contributing to weight gain, dyslipidemia and insulin resistance. In the current study, we investigated the causal role of Prg4 in controlling lipid and glucose metabolism in mice.

Methods

Prg4 knockout (KO) mice and wild-type (WT) littermates were challenged with an obesogenic high-fat diet (45% of total calories as fat) for 16?weeks. To further stimulate the development of metabolic alterations, 10% fructose water was provided starting from week 13.

Results

Prg4 deficiency only tended to reduce diet-induced body weight gain, but significantly improved glucose handling (AUC: ?29%; p?<?0.05), which was also reflected by a tendency towards a reduced HOMA-IR score (?49%; p?=?0.06 as compared to WT mice). This coincided with lower hepatic expression of glycolysis (Gck: ?30%; p?<?0.05) and lipogenesis (Acc: ?21%; p?<?0.05 and Scd1: ?38%; p?<?0.001) genes, which translated in significantly lower hepatic triglyceride levels (?56%; p?<?0.001) in Prg4 KO mice as compared to WT mice. Prg4 KO mice likely had lower glucose utilization by skeletal muscle as compared to WT mice, judged by a significant reduction in the genes Glut4 (?29%; p?<?0.01), Pfkm (?21%; p?<?0.05) and Hk2 (?39%; p?<?0.001). Moreover, Prg4 KO mice showed a favorable white adipose tissue phenotype with lower uptake of triglyceride-derived fatty acids (?46%; p?<?0.05) and lower gene expression of inflammatory markers Cd68, Mcp1 and Tnfα (?65%, ?81% and ?63%, respectively; p?<?0.01) than WT mice.

Conclusion

Prg4 KO mice are protected from high-fat diet-induced glucose intolerance and fatty liver disease.  相似文献   
9.
ADP-dependent kinases are used in the modified Embden-Meyerhoff pathway of certain archaea. Our previous study has revealed a mechanism for ADP-dependent phosphoryl transfer by Thermococcus litoralis glucokinase (tlGK), and its evolutionary relationship with ATP-dependent ribokinases and adenosine kinases (PFKB carbohydrate kinase family members). Here, we report the crystal structure of glucokinase from Pyrococcus furiosus (pfGK) in a closed conformation complexed with glucose and AMP at 1.9A resolution. In comparison with the tlGK structure, the pfGK structure shows significant conformational changes in the small domain and a region around the hinge, suggesting glucose-induced domain closing. A part of the large domain next to the hinge is also shifted accompanied with domain closing. In the pfGK structure, glucose binds in a groove between the large and small domains, and the electron density of O1 atoms for both the alpha and beta-anomer configurations was observed. The structural details of the sugar-binding site of ADP-dependent glucokinase were firstly clarified and then site-directed mutagenesis analysis clarified the catalytic residues for ADP-dependent kinase, such as Arg205 and Asp451 of tlGK. Homology search and multiple alignment of amino acid sequences using the information obtained from the structures reveals that eucaryotic hypothetical proteins homologous to ADP-dependent kinases retain the residues for the recognition of a glucose substrate.  相似文献   
10.
In Escherichia coli, the uptake and phosphorylation of glucose is carried out mainly by the phosphotransferase system (PTS). Despite the efficiency of glucose transport by PTS, the required consumption of 1 mol of phosphoenolpyruvate (PEP) for each mol of internalized glucose represents a drawback for some biotechnological applications where PEP is a precursor of the desired product. For this reason, there is considerable interest in the generation of strains that can transport glucose efficiently by a non-PTS mechanism. The purpose of this work was to study the effect of different gene expression levels, of galactose permease (GalP) and glucokinase (Glk), on glucose internalization and phosphorylation in a E. coli PTS(-) strain. The W3110 PTS(-), designated VH32, showed limited growth on glucose with a specific growth rate (mu) of 0.03 h(-1). A low copy plasmid family was constructed containing E. coli galP and glk genes, individually or combined, under the control of a trc-derived promoter set. This plasmid family was used to transform the VH32 strain, each plasmid having different levels of expression of galP and glk. Experiments in minimal medium with glucose showed that expression of only galP under the control of a wild-type trc promoter resulted in a mu of 0.55 h(-1), corresponding to 89% of the mu measured for W3110 (0.62 h(-1)). In contrast, no increase in specific growth rate (mu) was observed in VH32 with a plasmid expressing only glk from the same promoter. Strains transformed with part of the plasmid family, containing both galP and glk genes, showed a mu value similar to that of W3110. Fermentor experiments with the VH32 strain harboring plasmids pv1Glk1GalP, pv4Glk5GalP, and pv5Glk5GalP showed that specific acetate productivity was twofold higher than in W3110. Introduction of plasmid pLOI1594, coding for pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis, to strain VH32 carrying one of the plasmids with galP and glk caused a twofold increase in ethanol productivity over strain W3110, also containing pLOI1594.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号