首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   19篇
  国内免费   24篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   10篇
  2016年   14篇
  2015年   15篇
  2014年   11篇
  2013年   24篇
  2012年   12篇
  2011年   28篇
  2010年   23篇
  2009年   32篇
  2008年   26篇
  2007年   23篇
  2006年   25篇
  2005年   25篇
  2004年   17篇
  2003年   17篇
  2002年   16篇
  2001年   5篇
  2000年   12篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   8篇
  1993年   11篇
  1992年   5篇
  1991年   3篇
  1990年   8篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有468条查询结果,搜索用时 250 毫秒
1.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
2.
Gametophyte populations inAthyrium brevifrons were analysed with respect to population size and surviving area (%) of individual thalli in a transplant garden at Sapporo during 5–26 April 1983, to study the safe-microsite for gametophyte establishment in nature. Spores dispersed in August 1982 germinated and grew into thalli of various widths (<10 mm); 10.3% of the thalli matured by early October 1982. Maturation was attained by gametophytes of width 4–7 mm. The number of gametophytes gradually decreased with increasing width. By April 1983, 20.5% of total gametophytes were mature with a mode of 5–6 mm in width. The relative number of gametophytes with surviving area of 2–20% increased and that of 85–100% decreased in accordance with collection days delayed until after snow-melt. Surviving area (%) on gametophyte of all widths decreased with decreasing soil moisture contents. In particular, immature gametophytes of 2–4 mm width showed a significant correlation (P<0.01) between soil moisture content and relative number of gametophytes with 0–20% surviving area and mean surviving area (%) of every width of thalli. The spring desiccation might be a factor that reduces or limits gametophyte populations in nature.  相似文献   
3.
红皮树胚胎发育   总被引:3,自引:0,他引:3  
本文报道红皮树(Styrax suberifoltus Hook.et Arn.)大小孢子发育和早期胚胎发生。子房具胚珠20—23枚,胚珠横生,珠被二层,薄珠心,孢原细胞直接起大孢子母细胞作用。合点端大孢子具功能。胚囊发育为正常型。成熟胚囊具大量淀粉粒。小孢子形成为同时型,成熟花粉为二细胞型。传粉后、受精前两个助细胞在形状和对苏木精着色程度上有显著区别。胚乳发育为细胞型。在合子分裂前,胚乳细胞增至约26个时,暂时停止分裂。苏木精对细胞质不易着色,似解体细胞。有胚乳吸器。  相似文献   
4.
The red alga Porphyra purpurea (Roth) C. Agardh has a life cycle that alternates between shell-boring, filamentous sporophytes and free-living, foliose gametophytes. The significant morphological differences between these two phases suggest that many genes should be developmentally regulated and expressed in a phase-specific manner. In this study, we prepared and screened subtracted complementary DNA (cDNA) libraries specific for the sporophyte and gametophyte of P. purpurea. This involved the construction of cDNA libraries from each phase, followed by the removal of common clones through subtractive hybridization. Sampling of the subtracted libraries indicated that 8–10% of the recombinant colonies in each library were specific for the appropriate phase. Of 20 putative phase-specific cDNAs selected from each subtracted library, eight unique clones were obtained for the sporophyte and seven for the gametophyte. After confirming their phase-specificities by hybridization to gametophyte and sporophyte messenger RNA, these 15 phase-specific cDNAs were sequenced, and the deduced amino acid sequences were used to search protein databanks. Two proteins encoded by the sporophyte-specific cDNAs and two by the gametophyte-specific cDNAs were identified by their similarity to databank entries.  相似文献   
5.
Sporophytes were aseptically obtained by co-culture of female and male gametophytes derived from two types of spores (megaspores and microspores) of the heterosporous fernSalvinia natans All. Protoplasts isolated enzymatically from juvenile leaflets of sporophytes were cultured in a 1/10 Murashige and Skoog's medium containing 2.2 M naphthalene acetic acid, 2.2 M 6-benzyl-aminopurine, 0.35 M mannitol, and 0.05 M sucrose. Cell division took place within 6 days of culture, and cell-clusters composed of 9–10 cells were observed after 30 days of culture.Abbreviations BA 6-benzyl-aminopurine - MS Murashige and Skoog - NAA naphthaleneacetic acid  相似文献   
6.
马蹄香大小孢子发生及雌雄配子体形成   总被引:1,自引:0,他引:1  
马蹄香(Sarumahenryi,Oliv.)花药壁的发育属双子叶型。花粉母细胞减数分裂为同时型,四分体主要为四面体形,少数为左右对称式排列。腺质绒毡层,其细胞可排列为不规则的两层,双核或多核。到单细胞花粉阶段,绒毡层细胞内切向壁上出现许多乌氏体。成熟花粉为2细胞型,圆球状,具单萌发沟。雌蕊6心皮,上部彼此分离、下部联合。倒生胚珠,双珠被,厚球心。胚囊发育蓼型。成熟胚囊为七细胞结构,但两个助细胞退化较早。  相似文献   
7.
8.
Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.  相似文献   
9.
鹅掌楸雌配子体败育对生殖的影响   总被引:12,自引:0,他引:12  
胚珠和雌配子体败育是限制鹅掌楸生殖成功的一个重要因素。中国东部和西部鹅掌楸种群在雌配子体发育的各阶段上的败育程度有差异,以西部种群的发育较好。西部分布区较合适的生境促进了胚囊的发育,一定温度和湿度的环境可以活化珠心细胞输送营养物质供给雌配子体发育,提高受精和结籽的能力  相似文献   
10.
Effects of water stress on male gametophyte development in plants   总被引:1,自引:0,他引:1  
 Male reproductive development in plants is highly sensitive to water deficit during meiosis in the microspore mother cells. Water deficit during this stage inhibits further development of microspores or pollen grains, causing male sterility. Female fertility, in contrast, is quite immune to stress. The injury is apparently not caused by desiccation of the reproductive tissue, but is an indirect consequence of water deficit in the vegetative organs, such as leaves. The mechanism underlying this stress response probably involves a long-distance signaling molecule, originating in the organs that undergo water loss, and affecting fertility in the reproductive tissue, which conserves its water status. Much research has been focused on the involvement of abscisic acid in this regard, but the most recent evidence tends to reject a role for this hormone in the induction of male sterility. Stress-induced arrest of male gametophyte development is preceded by disturbances in carbohydrate metabolism and distribution within anthers, and an inhibition of the key sugar-cleaving enzyme, acid invertase. Since invertase gene expression can be modulated by sugar concentration, it is possible that decreased sugar delivery to reproductive tissue upon inhibition of photosynthesis by stress is the signal that triggers metabolic lesions leading to failure of male gametophyte development. Received: 31 October 1996 / Revision accepted: 18 February 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号