首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106457篇
  免费   3656篇
  国内免费   4293篇
  2023年   855篇
  2022年   1226篇
  2021年   2825篇
  2020年   1872篇
  2019年   2343篇
  2018年   2180篇
  2017年   1813篇
  2016年   2379篇
  2015年   4090篇
  2014年   7746篇
  2013年   8866篇
  2012年   5589篇
  2011年   6709篇
  2010年   4803篇
  2009年   4933篇
  2008年   5158篇
  2007年   5455篇
  2006年   4012篇
  2005年   3650篇
  2004年   2644篇
  2003年   2521篇
  2002年   2176篇
  2001年   1645篇
  2000年   1466篇
  1999年   1445篇
  1998年   1393篇
  1997年   1265篇
  1996年   1291篇
  1995年   1364篇
  1994年   1267篇
  1993年   1232篇
  1992年   1146篇
  1991年   1065篇
  1990年   971篇
  1989年   973篇
  1988年   864篇
  1987年   823篇
  1986年   628篇
  1985年   1149篇
  1984年   1650篇
  1983年   1112篇
  1982年   1389篇
  1981年   1211篇
  1980年   961篇
  1979年   919篇
  1978年   591篇
  1977年   587篇
  1976年   514篇
  1974年   388篇
  1973年   405篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
3.
The vitamin D binding protein (Gc) and posttransferrin-2 (Ptf-2) phenotypes have been determined in a number of Belgian cattle breeds. A very slow migrating variant of the Gc protein — Gc C — has been found in White and Red East Flemish breed. This variant was absent from the other breeds studied. This slow variant was identified as a vitamin D binding protein by autoradiography. The Gc C protein was shown to be controlled by a codominant autosomal allele Gc C at the Gclocus. The Gc C protein is probably identical with a fraction previously described in buffalo and an Italian cattle breed. The allele frequencies for the Gc and Pft-2 systems are reported for several Belgian breeds of cattle.  相似文献   
4.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
5.
 This paper deals with the use of cladistic methods and cladograms in phylogeny reconstruction in plant groups containing numerous taxa. How accurate are the cladograms as to details? Accuracy tests at the level of details require an independently known phylogeny, which excludes most plant groups, but such tests can be carried out in domesticated and experimental plant groups which have documented pedigrees. Four such tests are known and are presented here: a new case in Gilia and three previously published cases in Avena, Hordeum, and Helianthus. The four cases include domesticated and experimental plants, use of morphological and molecular evidence, and presence of dichotomous as well as reticulate phylogenies. The cladograms of the four plant groups all differ in significant details from the known pedigrees. These results are discussed in relation to problems of interpretation of cladograms. Received March 21, 2000 Accepted August 16, 2001  相似文献   
6.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   
7.
Nine fatty acid–peptide hybrid molecules were constructed using the general formula CH3(CH2) n CO-Phe Asp Cys-amide and tested for their ability to inhibit cell lysis induced by the membrane-active peptide melittin. All of these molecules, where n = 4–14, inhibited the action of melittin to some extent, but the longer carbon chains were most effective. Several potential inhibitors were also constructed with conservative substitutions in the peptide portion of the molecule. All were effective to varying degrees. We concluded that in the hexapeptide inhibitor published by Blondelle et al. (1993), the role of the first three residues is only to provide hydrophobic interaction with the melittin and has no particular amino acid sequence specificity. Some of these inhibitors were found to inhibit the lytic activity of a melittin analogue which had only superficial sequence similarity to melittin and also a truncated form of melittin, indicating the generality of the action of the inhibitors.Deceased 5/4/98  相似文献   
8.
The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate‐tolerant and ‐non‐tolerant plants from uncontaminated and arsenic/copper‐contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate‐tolerant and ‐non‐tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non‐tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo‐enzymes. It was concluded that in non‐tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.  相似文献   
9.
Depolymerization of hyaluronic acid (HA) by low-molecular-weight Amadori-rearrangement products in the presence of Cu2 + was studied as an in vitro model for the glycated protein-mediated degradation of biopolymers. This oxygen radical-mediated depolymerization was found to be specifically accelerated by Cu2 + , and significantly inhibited by catalase, hydroxyl radical scavengers, and metal ion chelators. Glycated polylysine also depolymerized HA. The difference in depolymerization rate between low- and high-molecular-weight Amadori products is discussed.  相似文献   
10.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号