首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   28篇
  国内免费   190篇
  2024年   1篇
  2022年   3篇
  2021年   1篇
  2020年   27篇
  2019年   23篇
  2018年   3篇
  2017年   6篇
  2016年   19篇
  2015年   46篇
  2014年   13篇
  2013年   29篇
  2012年   21篇
  2011年   3篇
  2010年   24篇
  2009年   14篇
  2008年   18篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   10篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   8篇
  1981年   1篇
排序方式: 共有332条查询结果,搜索用时 390 毫秒
1.
Abstract The growth, biomass δ13C values, and ability to accumulate titratable acidity at night were compared in eight environmental treatments for Cremnophila linguifolia, Sedum greggii, and their F1 hybrid. In the phytotron, differences in treatment daylength, day/night temperature and water availability were all found to have effects on total plant dry weight, nocturnal accumulation of titratable acidity and biomass δ13C value of at least some of the genotypes. However, there were differences between the genotypes both in the magnitude and direction of response of the phenotypic properties to the treatment variables. The phytotron δ13C values ranged from -12.9 to -19.2‰ for C. linguifolia, from -22.2 to -33.4‰ for S. greggii, and from -19.2 to -24.9‰ for the hybrid. After with-holding water for 76 h both C. linguifolia and the hybrid had midday Ψleaf values of -0.23 MPa; however, S. greggii had a value of -1.05 MPa. In contrast to past observations of other species, the daily watered plants of C. linguifolia had less negative δ13C values than did the plants watered only weekly.  相似文献   
2.
Under well-watered conditions in the laboratory, Sedum pulchellum assimilated CO2 only during the day, yet exhibited small nocturnal increases in tissue acid content followed by deacidification in the light (CAM-cycling). When drought-stressed, little CO2 was fixed in the day and none at night, yet even greater acid fluctuations were observed (CAM-idling). Calculations indicate that water savings associated with CAM-cycling when water is available are small. Water saving is more likely to be significant during CAM-idling when water supply is limited and stomata are closed day and night. Thus, in this species, CAM-idling may be of greater benefit to the plant, relative to CAM-cycling, in surviving habitats prone to frequent drought stress.Abbreviations A CO2 exchange rate - CAM Crassulacean acid metabolism - ci shoot internal CO2 concentration - gc shoot conductance to CO2 - PPFD photosynthetic photon flux density - WUE water-use efficiency Supported by National Science Foundation Grant No. DMB 8506093.  相似文献   
3.
Summary Sedum wrightii is one of only a few species in the Crassulaceae for which there is evidence for a high degree of variability in the ratio of daytime to nighttime CO2 assimilation. There are both environmental and genetic components to this variability. S. wrightii grows over a wide altitudinal gradient. The purpose of this study was to compare low, intermediate, and high altitude populations with respect to the degree of CAM expression and the capability to tolerate limited water availability. We utilized clonallyreplicated genotypes of plants from each population in common environment greenhouse experiments. Genetic differences among the populations were found in long-term water use efficiency, in 24 hour CO2 exchange patterns, in biomass 13C values, in carbon allocation, and in water status and ultimately survival during prolonged drought. The differences among the populations appear to be closely related to differences in the native habitats. The low altitude, desert plants had the greatest ability to grow and survive under conditions of limited water availability and appear to have the greatest shift to nighttime CO2 uptake during periods without water, while the high altitude plants had the poorest performance under these conditions and appear to shut down net carbon uptake when severely water limited.  相似文献   
4.
F. J. Castillo 《Oecologia》1996,107(4):469-477
The antioxidative protection during the C3-CAM shift induced by water stress was investigated in the temperate succulent Sedum album L. The C3-CAM shift was characterized in terms of CO2 exchange, titratable acidity and phosphoenolpyruvate carboxylase activity. Well-watered plants displayed C3-like patterns of gas exchange and exhibited a mild day-night acid fluctuation indicating that those plants were performing CAM-cycling metabolism. Imposed drought highly stimulated CAM cycling, decreasing the net CO2 uptake during the day, eliminating net CO2 efflux at night and stimulating tissue acid fluctuations. As water deficit developed, chlorophyll fluorescence measurements showed a decrease in the Fv/Fm ratio, indicating that photoinhibition could follow after severe drought. Protection might be performed by the increased activity of enzymes involved in the destruction of free radicals and oxidants, but their response depended on the water status of the plant. Ascorbate peroxidase and superoxide dismutase activities increased in plants subjected to mild stress but declined during severe water stress. Catalase activity, however, was quite stable under mild water stress and was clearly inhibited under severe water stress. At this stage, glutathione reductase and monodehydroascorbate reductase seemed to be very important in the protection against oxidants, both increasing considerably their activities under severe water stress. Even if recycling has been shown to alleviate photoinhibition, our results clearly demonstrate that antioxidative enzymes play an important role in the protection of plants from oxidants during the C3-CAM shift induced by water stress.  相似文献   
5.
6.
7.
8.
Experiments were conducted to investigate and control pollutant emission from incineration of Sedum plumbizincicola plants on a laboratory scale using an entrained flow tube furnace. Without control technologies, the flue gas contained 0.101 mg Nm?3 of Cd, 46.4 mg Nm?3 of Zn, 553 mg Nm?3 of NOx, 131 pg Nm?3 of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/Fs) and 35.4 mg Nm?3 of polycyclic aromatic hydrocarbons (PAHs). In pollutants control experiments. Al2O3, CaO, and kaolin were compared as adsorbents and activated carbon was used as an end-of-pipe method for the capture of pollutants. Kaolin, the most effective of the three adsorbents, removed 91.2% of the Cd in flue gas. While 97.6% of the Cd and 99.6% of the PAHs were removed by activated carbon. Incineration may therefore be regarded as a viable option for the safe disposal of the biomass of the zinc and cadmium hyperaccumulator species S. plumbizincicola.  相似文献   
9.
胭脂红景天叶片呈胭脂红色,花开红色,具有极强的耐寒性和耐旱性,是优良的城市绿化植物。为了扩大胭脂红景天的应用范围,丰富恶劣生境的绿化材料,本试验对从哈尔滨引种到西藏日喀则表现良好的胭脂红景天进行了生理适应性研究。结果表明,随着栽植时间的延长,胭脂红景天叶片中丙二醛含量逐渐升高,但增加的幅度较小,脯氨酸含量先降低后升高,SOD、POD、CAT等保护酶的活性均呈先升高后降低的趋势。胭脂红景天可以通过增加体内渗透调节物质含量和提高保护酶活性来调节自身的生理代谢,适应日喀则地区高辐射、干旱等条件。  相似文献   
10.
为探讨铜(Cu)胁迫条件下土壤微生物对海州香薷(Elsholtzia splendens)光合生理和叶绿素荧光参数的影响,实验设置添加Cu(Cu胁迫)、接种土壤微生物、添加Cu与接种土壤微生物等3个处理,以不添加Cu与不接种土壤微生物为对照(CK)。结果表明:接种土壤微生物处理的植株相对叶绿素含量、净光合速率(Pn)、水分利用效率(WUE)均显著高于CK;且对初始荧光(Fo)和最大光化学效率(Fv/Fm)均有显著性影响。与CK相比,添加Cu降低了海州香薷的Pn和气孔导度(Gs),但胞间CO2浓度(Ci)的变化与Pn相反,表明其对光合作用的影响主要是非气孔限制因素。添加Cu的植株相对叶绿素含量显著下降,但Cu胁迫下接种土壤微生物提高了植株相对叶绿素含量,差异显著。在Cu胁迫条件下,接种土壤微生物的植株具有较高的Fv/Fm及较低的Fo,显著提高了海州香薷的WUEPnGs。说明接种土壤微生物可通过提高相对叶绿素含量、改善叶绿素荧光和光合作用来减轻Cu胁迫对海州香薷植株造成的伤害,从而提高海州香薷耐受Cu胁迫的能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号