首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1652篇
  免费   118篇
  国内免费   95篇
  2024年   2篇
  2023年   16篇
  2022年   18篇
  2021年   48篇
  2020年   40篇
  2019年   57篇
  2018年   68篇
  2017年   37篇
  2016年   51篇
  2015年   83篇
  2014年   223篇
  2013年   345篇
  2012年   205篇
  2011年   109篇
  2010年   67篇
  2009年   99篇
  2008年   78篇
  2007年   88篇
  2006年   55篇
  2005年   51篇
  2004年   44篇
  2003年   39篇
  2002年   23篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1865条查询结果,搜索用时 46 毫秒
1.
Capture and long‐distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg‐laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture‐mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.  相似文献   
2.
A SNP/microsatellite genetic linkage map of the Atlantic cod (Gadus morhua)   总被引:1,自引:0,他引:1  
A first genetic linkage map of the Atlantic cod ( Gadus morhua ) was produced, based on segregation data from 12 full-sib families of Norwegian origin. The map contained 174 single nucleotide polymorphism markers and 33 microsatellites, distributed on 25 linkage groups and had a length of 1225 cM. A significant difference in recombination rates between sexes was found, the average ratio of female:male recombination rates being 1.78 ± 1.62 (SD).  相似文献   
3.
H. Bai  Y. Sun  N. Liu  Y. Liu  F. Xue  Y. Li  S. Xu  A. Ni  J. Ye  Y. Chen  J. Chen 《Animal genetics》2018,49(3):226-236
Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing‐You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome‐wide CNV detection using Affymetrix chicken high‐density 600K data on 48 deformed‐beak and 48 normal birds using penncnv . As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed‐beak and normal birds respectively. Further RT‐qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed‐beak and normal birds (< 0.01). Within these six regions, three and 21 known genes were identified in deformed‐beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT‐qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (< 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens.  相似文献   
4.
Different from the traditional knowledge about kelp, three sexual phenotypes (female, male, and monoecious) exist in the haploid gametophytes of Undaria pinnatifida. However, the sex-determining mechanisms remain unknown. Genetic linkage mapping is an efficient tool to identify sex-linked regions. In the present study, we resequenced a segregating gametophyte family based on the male genome of U. pinnatifida. A high-density genetic linkage map was constructed using 9887 SNPs, with an average distance of 0.41 cM between adjacent SNPs. On the basis of this genetic map and using the composite interval mapping method, we identified 62 SNPs significantly linked with the sexual phenotype. They were located at a position of 67.67 cM on the linkage group 23, corresponding to a physical range of 14.67 Mbp on the HiC_Scaffold_23 of the genome. Reanalysis of the previous specific length amplified fragment sequencing data according to the reference genome led to the identification of a sex-linked genomic region that encompassed the above-mentioned 14.67 Mbp region. Hence, this overlapped genomic range was likely the sex-determining region. Within this region, 129 genes were retrieved and 39 of them were annotated with explicit function, including the potential male sex-determining gene-encoding high mobility group (HMG) domain protein. Relative expression analysis of the HMG gene showed that its expression was higher in male gametophytes during the vegetative phase and monoecious gametophytes during both the vegetative and gametogenesis phases, but significantly lower in male gametophytes during the gametogenesis phase. These results provide a foundation for deciphering the sex-determining mechanism of U. pinnatifida.  相似文献   
5.
为了探究三角帆蚌(Hyriopsis cumingii)糖原合成激酶-3β(GSK3β)基因对壳色的影响,研究采用RACE技术获得Hc-GSK3β基因cDNA全长1867 bp,其中包含1261 bp的ORF区编码420个氨基酸, ORF中含有一个S_TKc结构域,该结构域序列高度保守。组织差异表达分析发现Hc-GSK3β基因在紫色蚌鳃、斧足、内脏团和边缘膜组织中表达量高于白色蚌的表达量(P<0.05),且在斧足和边缘膜表达差异水平达到极显著(P<0.01),而在紫色蚌闭壳肌组织中表达量显著低于白色蚌(P<0.05)。原位杂交(ISH)实验结果显示在三角帆蚌外套膜的外褶、中褶、內褶、背膜区和腹膜区均有阳性信号产生,且在外褶的信号表达较强烈。该基因经重测序比较,共鉴定出6个SNP位点,其中在C+185A位点的CA基因型在紫色蚌的分布频率显著高于白色三角帆蚌(P<0.05);在紫色蚌中, T+341G位点TT基因型三角帆蚌内壳颜色参数b值显著低于TG基因型(P<0.05)。研究表明, Hc-GSK3β基因参与了三角帆蚌壳色形成,筛选的SNP标记可用于三角帆蚌壳...  相似文献   
6.
7.
Guanylate cyclase activities are present in both soluble and particulate fractions of rat myometrial extract. Triton, slightly stimulated the soluble (50%) while markedly increasing (1000%) the particulate activity. Both fractions appear to be regulated independently. Predominantly, the soluble form was activated by sodium nitroprusside, involving interactions with SH-groups. On the other hand, the particulate form was stimulated by a series of unsaturated fatty acids and their hydroperoxides. The latter activation appears to result from direct hydrophobic effects rather than peroxide or free radical generation.  相似文献   
8.

DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2′-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5′-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   
9.
In this study, genome‐wide association study (GWAS) results of porcine F2 crosses were used to map QTL in outcross Piétrain populations. For this purpose, two F2 crosses (Piétrain × Meishan, = 304; Piétrain × Wild Boar, = 291) were genotyped with the PorcineSNP60v2 BeadChip and phenotyped for the dressing yield, carcass length, daily gain and drip loss traits. GWASs were conducted in the pooled F2 cross applying single marker mixed linear models. For the investigated traits, between two and five (in total 15) QTL core regions, spanning 250 segregating SNPs around a significant trait‐associated peak SNP, were identified. The SNPs within the QTL core regions were subsequently tested for trait association in two outcross Piétrain populations consisting of 771 progeny‐tested boars and 210 sows with their own performance records. In the sow (boar) dataset, five (eight) of the 15 mapped QTL were validated. Hence, many QTL mapped in the F2 crosses (with Piétrain as a common founder breed) are still segregating in the current Piétrain breed. This confirms the usefulness of existing F2 crosses for mapping QTL that are still segregating in the recent founder breed generation. The approach utilizes the high power of an F2 cross to map QTL in a breeding population for which it is not guaranteed that they would be found using a GWAS in this population.  相似文献   
10.
The genome‐wide association studies (GWASs) are essential to determine the genetic bases of either ecological or economic phenotypic variation across individuals within populations of the model and nonmodel organisms. For this research question, the GWAS replication testing different parameters and models to validate the results'' reproducibility is common. However, straightforward methodologies that manage both replication and tetraploid data are still missing. To solve this problem, we designed the MultiGWAS, a tool that does GWAS for diploid and tetraploid organisms by executing in parallel four software packages, two designed for polyploid data (GWASpoly and SHEsis) and two designed for diploid data (GAPIT and TASSEL). MultiGWAS has several advantages. It runs either in the command line or in a graphical interface; it manages different genotype formats, including VCF. Moreover, it allows control for population structure, relatedness, and several quality control checks on genotype data. Besides, MultiGWAS can test for additive and dominant gene action models, and, through a proprietary scoring function, select the best model to report its associations. Finally, it generates several reports that facilitate identifying false associations from both the significant and the best‐ranked association Single Nucleotide Polymorphisms (SNPs) among the four software packages. We tested MultiGWAS with public tetraploid potato data for tuber shape and several simulated data under both additive and dominant models. These tests demonstrated that MultiGWAS is better at detecting reliable associations than using each of the four software packages individually. Moreover, the parallel analysis of polyploid and diploid software that only offers MultiGWAS demonstrates its utility in understanding the best genetic model behind the SNP association in tetraploid organisms. Therefore, MultiGWAS probed to be an excellent alternative for wrapping GWAS replication in diploid and tetraploid organisms in a single analysis environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号