首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2019年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2008年   1篇
  1984年   2篇
  1982年   2篇
排序方式: 共有11条查询结果,搜索用时 281 毫秒
1.
Glioblastoma, an aggressive brain tumor, has a poor prognosis and a high risk of recurrence. An improved chemotherapeutic approach is required to complement radiation therapy. Gold(I) complexes bearing phosphole ligands are promising agents in the treatment of cancer and disturb the redox balance and proliferation of cancer cells by inhibiting disulfide reductases. Here, we report on the antitumor properties of the gold(I) complex 1-phenyl-bis(2-pyridyl)phosphole gold chloride thio-β-d-glucose tetraacetate (GoPI-sugar), which exhibits antiproliferative effects on human (NCH82, NCH89) and rat (C6) glioma cell lines. Compared to carmustine (BCNU), an established nitrosourea compound for the treatment of glioblastomas that inhibits the proliferation of these glioma cell lines with an IC50 of 430 μM, GoPI-sugar is more effective by two orders of magnitude. Moreover, GoPI-sugar inhibits malignant glioma growth in vivo in a C6 glioma rat model and significantly reduces tumor volume while being well tolerated. Both the gold(I) chloro- and thiosugar-substituted phospholes interact with DNA albeit more weakly for the latter. Furthermore, GoPI-sugar irreversibly and potently inhibits thioredoxin reductase (IC50 4.3 nM) and human glutathione reductase (IC50 88.5 nM). However, treatment with GoPI-sugar did not significantly alter redox parameters in the brain tissue of treated animals. This might be due to compensatory upregulation of redox-related enzymes but might also indicate that the antiproliferative effects of GoPI-sugar in vivo are rather based on DNA interaction and inhibition of topoisomerase I than on the disturbance of redox equilibrium. Since GoPI-sugar is highly effective against glioblastomas and well tolerated, it represents a most promising lead for drug development. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.  相似文献   
2.
Bardet–Biedl Syndrome is a multisystem autosomal recessive disorder characterized by central obesity, polydactyly, hypogonadism, learning difficulties, rod-cone dystrophy and renal dysplasia. Bardet–Biedl Syndrome has a prevalence rate ranging from 1 in 100,000 to 1 in 160,000 births although there are communities where Bardet–Biedl Syndrome is found at a higher frequency due to consanguinity. We report here a Pakistani consanguineous family with two affected sons with typical clinical features of Bardet–Biedl Syndrome, in addition to abnormal liver functioning and bilateral basal ganglia calcification, the latter feature being typical of Fahr's disease. Homozygous regions obtained from SNP array depicted three known genes BBS10, BBS14 and BBS2. Bidirectional sequencing of all coding exons by traditional sequencing of all these three genes showed a homozygous deletion of 10 nucleotides (c.1958_1967del), in BBS10 in both affected brothers. The segregation analysis revealed that the parents, paternal grandfather, maternal grandmother and an unaffected sister were heterozygous for the deletion. Such a large deletion in BBS10 has not been reported previously in any population and is likely to be contributing to the phenotype of Bardet–Biedl Syndrome in this family.  相似文献   
3.
Fructus Schizandrae, a traditional Chinese tonic, has been shown to lower the elevated serum glutamic pyruvic transaminase (SGPT) levels of patients with chronic viral hepatitis and several of its components decrease the hepatotoxicity of carbon tetrachloride (CCl4) in animals. This paper deals with the mechanism of protection against CCl4-hepatotoxicity of these compounds as well as of DDB, a synthetic analogue of Schizandrin (Sin) C. Of the seven components, Sin B and C, Schizandrol (Sol) B, Schizandrer (Ser) A and B, as well as dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxy-biphenyl-2,2′-dicarboxylate (DDB) were shown to inhibit CCl4-induced lipid peroxidation and [14C]Cl4 covalent binding to lipids of liver microsomes from phenobarbital(PB)-treated mice. The compounds also decreased carbon monoxide (CO) production and cofactor (NADPH, oxygen) utilization during CCl4 metabolization by liver microsomes. It may be postulated, therefore, that the hepatoprotective effect of certain components isolated from Fructus Schizandrae as well as DDB is due to their inhibitory effect on CCl4-induced lipid peroxidation and the binding of CCl4-metabolites to lipids of liver microsomes.  相似文献   
4.
Treatment of fasted rats with relatively high doses of morphine rapidly results in depletion of hepatic glutathione (GSH) content and marked elevation of serum transaminase activity. Such morphine-induced response has been generally attributed to central nervous system mediated effects of the drug. We now report that this response might be due to a direct effect of the drug in the liver. That is, its metabolic activation to reactive electrophilic metabolite(s), by the hepatic cytochrome P-450-dependent mixed function oxidase system. Structure-activity relationships of morphine and its congeners indicate that the (-)-3-hydroxy-N- methylmorphinan moiety is linked with the potential of these opioids to deplete hepatic GSH and to raise serum transaminases in rats.  相似文献   
5.
Incubation of tritium-labeled morphine and cold glutathione (GSH) or cold morphine and tritiated GSH with liver microsomal preparations obtained from phenobarbital-treated rats led to the identification by high performance liquid chromatography (HPLC) of a glutathionylmorphine adduct. Liquid secondary ion mass spectral analysis established the molecular weight of the metabolite to be 590 which corresponds to the mass of a mono-GSH-morphine adduct. High resolution (360 and 500 MHz) 1H-NMR experiments have led to the tentative assignment of the structure of this metabolite as 10-alpha-S-glutathionylmorphine. Based on both in vivo and in vitro data, the formation of this product appears to be mediated by cytochrome P-450 and to involve a reactive intermediate that may be responsible for the observed covalent binding of radiolabeled morphine to proteins and, at least in part, for the morphine-induced depletion of GSH in the rat.  相似文献   
6.
The delivery of drugs to the brain is complicated by the multiple factors including low blood–brain barrier (BBB) passive permeability, active BBB efflux systems, and plasma protein binding. Thus, a detailed understanding of the transport of the new potent substances through the membranes is vitally important and their physico-chemical characteristics should be analyzed at first. This work presents an evaluation of drug likeness of eight 7-O-arylpiperazinylcoumarin derivatives with high affinity towards serotoninergic receptors 5-HT1A and 5-HT2A with particular analysis of the requirements for the CNS chemotherapeutics. The binding constants to human serum albumin (HSA) were determined at physiological pH using fluorescence spectroscopy, and then their mode of action was explained by analysis of theoretical HSA complexes. Dynamic simulation of systems allowed for reliable evaluation of the interaction strength. The analyzed coumarins were able to pass BBB, and they present good drug likeness properties. They showed high affinities to HSA (log KQ = 5.3–6.0 which corresponds to −8.12 to −7.15 kcalmol−1 of Gibbs free energy). The changes of the emission intensity upon binding to HSA were scrutinized showing the different mode of action for 4-phenylpiperazinylcoumarins. The values of computed Gibbs free energy and determined on the basis of experimentally obtained binding constants log KQ coincide suggesting a good quality of the theoretical model. Overall the 8-acetyl-7-O-arylpiperazinyl-4-methylcoumarin derivatives represent valuable lead compounds to be further tested in various preclinical assays as a possible chemotherapeutics against CNS diseases. Studied coumarins can be metabolized by cytochrome P450 to aldehydes and hydroxy derivatives. The existence of other binding sites inside HSA than Sudlow’s site 1 was postulated. The longer aliphatic linker between coumarin and piperazine moieties favored binding to HSA in other than Sudlow site 1 pocket.  相似文献   
7.
Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l ‐thyroxin (L‐T4)‐induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4) and triiodothyronine (T3); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high‐density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l ‐T4 (500‐µg kg?1 body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg?1 for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
The tandem of free radicals and methylglyoxal   总被引:1,自引:0,他引:1  
Methylglyoxal is an alpha-oxoaldehyde inevitably produced from triose-phosphate intermediates of phosphorylating glycolysis, and also from amino acids and acetone. Recently, the attention has been focused on the involvement of free radicals in methylglyoxal toxicity. In this review, a summary of the relationship between methylglyoxal metabolism and free radical production is presented, extending discussion from the possible metabolic routes to the toxicological events by reviewing the role of free radicals in both generation and degradation of this 1,2-dicarbonyl as well as in the modification of biological macromolecules, and focusing on the action of methylglyoxal upon cellular glutathione content. Methylglyoxal-provoked free radical generation involving reactive oxygen species (ROS), reactive nitrogen species (RNS) as well as organic radicals like methylglyoxal radial or crosslinked protein radical as potential risk factors to tissue damage propagation, is thoroughly discussed. Special attention is paid to the potential therapeutic interventions. The paper arrives at the conclusion that a tight junction exists between methylglyoxal toxicity and free radical (particularly ROS) generation, though the toxicity of 1,2-dicarbonyl evolves even under anaerobic conditions, too. The events follow a sequence beginning with carbonyl stress essential for the toxicity, leading to free radical formation and finally ending in either apoptosis or necrosis. Both oxidative and nitrosative stress play important but not indispensable role in the development of methylglyoxal toxicity.  相似文献   
9.

Background

Chronic lead (Pb2 +) exposure leads to the reduced lifespan of erythrocytes. Oxidative stress and K+ loss accelerate Fas translocation into lipid raft microdomains inducing Fas mediated death signaling in these erythrocytes. Pathophysiological-based therapeutic strategies to combat against erythrocyte death were evaluated using garlic-derived organosulfur compounds like diallyl disulfide (DADS), S allyl cysteine (SAC) and imidazole based Gardos channel inhibitor clotrimazole (CLT).

Methods

Morphological alterations in erythrocytes were evaluated using scanning electron microscopy. Events associated with erythrocyte death were evaluated using radio labeled probes, flow cytometry and activity gel assay. Mass spectrometry was used for detection of GSH-4-hydroxy-trans-2-nonenal (HNE) adducts. Fas redistribution into the lipid rafts was studied using immunoblotting technique and confocal microscopy.

Results

Combination of SAC and CLT was better than DADS and CLT combination and monotherapy with these agents in prolonging the survival of erythrocytes during chronic Pb2 + exposure. Combination therapy with SAC and CLT prevented redistribution of Fas into the lipid rafts of the plasma membrane and downregulated Fas-dependent death events in erythrocytes of mice exposed to Pb2 +.

Conclusion and general significance

Ceramide generation was a critical component of Fas receptor-induced apoptosis, since inhibition of acid sphingomyelinase (aSMase) interfered with Fas-induced apoptosis during Pb2 + exposure. Combination therapy with SAC and CLT downregulated apoptotic events in erythrocytes by antagonizing oxidative stress and Gardos channel that led to suppression of ceramide-initiated Fas aggregation in lipid rafts. Hence, combination therapy with SAC and CLT may be a potential therapeutic option for enhancing the lifespan of erythrocytes during Pb2 + toxicity.  相似文献   
10.
Pérez-Poyato MS  Gordo MM  Marfa MP 《Gene》2012,506(1):207-210
Niemann-Pick type C disease (NP-C) is a lysosomal storage disorder characterized by a progressive neurological deterioration. Different clinical forms have been defined based on patient age at neurological symptoms onset: perinatal, early infantile (EI), late infantile (LI), juvenile and adult. There is no curative treatment for NP-C. Miglustat is the first effective therapy for the neurological manifestations of NP-C patients, as it can slow down the progression of the disease. Our aim is to establish recommendations on the initiation and discontinuations with miglustat therapy based on the modified disability scale scores and describe therapeutic options to prevent treatment-related adverse effects. Four patients with different clinical forms of NP-C are reported. The modified disability scale was applied at baseline and treatment on follow up. Treatment with miglustat was initiated in patient 1 (EI form) at onset of delayed speech. Patient 2 (LI form) who started miglustat therapy in the advanced stage of the disease, died 2years thereafter. Patient 3 (juvenile form) started treatment with miglustat at diagnosis and remains stable at four years on follow up. Patient 4, asymptomatic, is not currently treated. Miglustat has demonstrated efficacy to slow down the neurological impairment in NP-C patients assessed by the modified disability scale. Miglustat should be initiated at the onset of the first neurological symptoms. Disability scores above 20 reflect an advanced neurological impairment of the disease and miglustat therapy should be discontinued or not initiated. The gastrointestinal adverse effects can be prevented by dose titration and dietary modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号