首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   9篇
  国内免费   8篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   13篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   15篇
  2008年   12篇
  2007年   12篇
  2006年   10篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   1篇
  2001年   9篇
  2000年   4篇
  1999年   7篇
  1998年   15篇
  1997年   21篇
  1996年   11篇
  1995年   13篇
  1994年   12篇
  1993年   7篇
  1992年   17篇
  1991年   7篇
  1990年   13篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
1.
Evidence regarding the interaction of ultraviolet-B (UV-B, 280-320 nm) radiation and plant competition in terrestrial ecosystems is examined. The competitive interactions of some species pairs were affected even by ambient solar UV-B radiation (as exists without ozone depletion), when compared to control pairs grown without UV-B. Also, the total shoot biomass of these species pairs was depressed under ambient UV-B. Relatively large increases in UV-B radiation (approximating a 40% ozone layer reduction when weighted with the generalized plant action spectrum) altered the competitive interactions of some species pairs grown in pots under field conditions, but did not affect the total shoot biomass production of those pairs. Recent field experiments have examined the competitive interactions of wheat ( Triticum aestivum L. cv. Bannock) and wild oat ( Avena fatua L.) under a simulated increased UV-B regime resulting from a 16% ozone layer reduction when weighted with the generalized plant action spectrum. This increase in UV-B altered the competitive interactions of these two species without affecting the total shoot biomass production of the species pair. The manner in which increased UV-B affected the relative competitive abilities of the two species was highly dependent upon the environmental conditions during the early life stages of the plants. The implications of these results for both agricultural and natural plant communities are discussed.  相似文献   
2.
3.
Summary Cuttings of hybrid poplar (Populus × euramericana var. Dorskamp) were exposed to ozone (80 g/m3 from 2100 hours to 0700 hours, 180 g/m3 from 0700 hours to 2100 hours) for 3 months. Ozone reduced the starch content in leaves and stem bark, whereas starch granules accumulated in bundle sheath cells along small leaf veins. At the same time, sucrose and inositol content increased in the leaves. Mesophyll cells in the vicinity of the stomata were injured first, and droplet-like material appeared on their walls. In the sieve plates of fumigated trees, the pores showed a higher degree of narrowing than those of the control treatment. Cell collapse in the leaves was accompanied by water loss and an increase in air space. In the stems, the ozone treatment led to a reduced radial width, particularly in the xylem tissue. These results are discussed in relation to reduced or inhibited phloem loading and ozone-induced drought stress. The plants injured by ozone showed quite distinct patterns of metabolite responses as well as enzyme activities (PEP- and RubP-carboxylase) in the leaves from the top to the bottom. There were also remarkable differences in the reaction of sucrose and inositol between leaves and stem bark. Future research should therefore increasingly follow a whole-plant approach for a better understanding of complex plant reactions.  相似文献   
4.
Summary Leaf and bark structure of a birch clone (Betula pendula Roth) continuously exposed to charcoal-filtered air or charcoal-filtered air plus ozone (0.05, 0.075, 0.1 l 1-1) was investigated throughout one growing season. Increasing ozone dose influenced leaf differentiation by reducing leaf area and increasing inner leaf air space, density of cells developing into stomata, scales and hairs. When approximately the same ozone dose had been reached, macroscopical and microscopical symptoms appeared irrespective of the ozone concentration used during treatment. Structural decline began in mesophyll cells around stomatal cavities (droplet-like exudates on the cell walls), continued with disintegration of the cytoplasma and ended in cell collapse. Epidermal cells showed shrinkage of the mucilaginous layer (related to water loss). Their collapse marked the final stage of leaf decline. When subsidiary cells collapsed, guard cells passively opened for a transitory period before collapsing and closing. With increasing ozone dose starch remained accumulated along the small leaf veins and in guard cells. IIK-positive grains were formed in the epidermal cells. This contrasted with the senescent leaves, where starch was entirely retranslocated. Injury symptoms in stem and petiole proceeded from the epidermis to the cambium. Reduced tissue area indicated reduced cambial activity. In plants grown in filtered air and transferred into ozone on 20 August, injury symptoms developed faster than in leaves formed in the presence of ozone. Results are discussed with regard to O3-caused acclimation and injury mechanisms.  相似文献   
5.
An exposure — response study with proportionalto-ambient ozone levels was conducted in closed chambers on 3-year-old European beech (Fagus sylvatica L.) of montane origin. The fumigation started in April 1990 and lasted for a single growing season. Climate data and ozone concentrations monitored at an experimental station of the Institute for Applied Plant Biology, Schönenbuch, Switzerland were simulated in the exposure chambers 12 days later (1*O3). To test exposure-response relations three additional treatments were applied, subambient (0.2*O3) and two proportionally increased ozone treatments (1.5*O3 and 2*O3). The photosynthetic behaviour of the trees in August revealed the light reactions to be less affected than parameters which are related to the dark reactions of photosynthesis. Assimilation (A350), apparent carboxylation efficiency (CE), and maximum photosynthetic capacity (A2500) were reduced with increasing ozone concentration. For the ozone response of CE and A2500 Critical Levels were calculated.  相似文献   
6.
From April 1988 to October 1991 3-year-old seed propagated beech (Fagus sylvatica L.) trees were exposed in open-top chambers to four different levels of air pollution: (1) charcoal filtered air, (2) ambient air, (3) ambient air plus 30 nl 1-1 ozone during the summer, and (4) ambient air plus 30 nl 1-1 ozone during the summer and 20 nl 1-1 SO2 and NO2 during the winter. Leaf colour was studied in the autumns of 1989 and 1991 and a close relationship between ozone dose and premature senescence was found. A correlation also exists between the colour groups and chlorophyll fluorescence (Fv/Fm). Ozone fumigation increases the size and speeds up the development of the plastoglobules. This is described using an index based on the volume of plastoglobules as a percentage of chloroplast volume. The index was significantly higher for ozone fumigated plants than for control plants during August to November 1989. According to all three methods it is concluded that low levels of ozone accelerate leaf senescence processes inF. sylvatica. There are indications that leaves of the first and the second flush react differently to the ozone treatment. Irrespective of the ozone treatment a special cell wall structure, probably a local suberization, is confined to the subsidiary cells in leaves of the first flush.  相似文献   
7.
8.
Summary The unprecedented rate of depletion of the stratospheric ozone layer will likely lead to appreciable increases in the amount of ultraviolet-B radiation (UV-B, 280–320 nm) reaching the earth's surface. In plants, photosynthetic reactions and nucleic acids in the mesophyll of leaves are deleteriously affected by UV-B. We used a fiber-optic microprobe to make direct measurements of the amount of UV-B reaching these potential targets in the mesophyll of intact foliage. A comparison of foliage from a diverse group of Rocky Mountain plants enabled us to assess whether the foliage of some plant life forms appeared more effective at screening UV-B radiation. The leaf epidermis of herbaceous dicots was particularly ineffective at attenuating UV-B; epidermal transmittance ranged from 18–41% and UV-B reached 40–145 m into the mesophyll or photosynthetic tissue. In contrast to herbaceous dicots, the epidermis of 1-year old conifer needles attenuated essentially all incident UV-B and virtually none of this radiation reached the mesophyll. Although the epidermal layer was appreciably thinner in older needles (7 y) at high elevations (Krumholtz), essentially all incident UV-B was attenuated by the epidermis in these needles. The same epidermal screening effectiveness was observed after removal of epicuticular waxes with chloroform. Leaves of woody dicots and grasses appeared intermediate between herbaceous dicots and conifers in their UV-B screening abilities with 3–12% of the incident UV-B reaching the mesophyll. These large differences in UV-B screening effectiveness suggest that certain plant life forms may be more predisposed than others to meet the challenge of higher UV-B levels resulting from stratospheric ozone depletion.  相似文献   
9.
The effect of ozone exposure on the activities of reactive oxygen scavenging enzymes (SOD†, catalase, GSH-Px) in RBC of Japanese charr (Salvelinus leucomaenis) was examined. Ozone (0, 0.4 and 0.7 ppm as initial concentrations) was exposed to Japanese charr for 30 min, which definitely caused serious membrane damage to RBC of fish. Ozone exposure at 0.4 and 0.7 ppm decreased activities of both catalase and GSH-Px by 80 to 57+ of the control. On the other hand, the activities of SOD remained unaffected even by 0.7 ppm ozone exposure. A hypothesis on the RBC membrane damage and participation of SOD and heme-iron was proposed.  相似文献   
10.
目的:研究臭氧大自血疗法治疗急性缺血性脑梗死患者的临床疗效,为临床治疗提供依据。方法:选取2014年10月到2015年8月我院收治的急性缺血性脑梗死患者210例,按照随机数字表法将患者分为研究组和对照组,每组105例,两组均给予常规治疗,研究组在常规治疗的基础上给予臭氧大自血疗法,应用barthel指数评定日常生活活动能力,应用美国国立卫生研究院卒中量表(NIHSS)评价神经功能缺损,比较两组临床疗效,治疗前后甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白(HLD-C)和低密度脂蛋白(LDL-C),并比较两组不良反应。结果:研究组总有效率为87.6%(92/105)显著高于对照组的73.3%(77/105),比较差异具有统计学意义(P0.05);治疗后两组NIHSS评分显著降低,barthel评分显著升高,且研究组NIHSS评分显著低于对照组,barthel评分显著高于对照组,比较差异具有统计学意义(P0.05);治疗后两组TG、TC和LDL-C均显著降低,HDL-C显著升高,且研究组TG、TC和LDL-C低于对照组,HDL-C高于对照组,比较差异具有统计学意义(P0.05);两组不良反应比较无统计学意义(P0.05)。结论:臭氧大自血疗法治疗急性缺血性脑梗死疗效较好,能明显改善患者的神经功能和日常生活。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号