首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   26篇
  国内免费   2篇
  2023年   10篇
  2022年   9篇
  2021年   21篇
  2020年   18篇
  2019年   13篇
  2018年   16篇
  2017年   11篇
  2016年   24篇
  2015年   17篇
  2014年   25篇
  2013年   27篇
  2012年   18篇
  2011年   24篇
  2010年   9篇
  2009年   26篇
  2008年   13篇
  2007年   14篇
  2006年   13篇
  2005年   7篇
  2004年   7篇
  2002年   1篇
  1999年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
1.
This work describes a new electrochemical sensor for hydrogen peroxide based on tin pentacyanonitrosylferrate (SnPCNF)-modified carbon ceramic electrode (CCE). The modified electrode was constructed by using a sol-gel technique involving two steps: construction of CCE containing metallic tin (Sn) powder and then electrochemical creation of SnPCNF film on the surface of CCE. The modified electrode was characterized by energy-dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and cyclic voltammetry (CV) techniques. The charge transfer coefficient (α) and charge transfer rate constant (ks) for the modifying film were calculated. The electrocatalytic activity of the modified electrode toward the reduction of hydrogen peroxide was studied by CV and chronoamperometry. A linear calibration curve was obtained over the hydrogen peroxide concentration range of 0.5 to 69.4 μM using a hydrodynamic amperometric technique. The limit of detection (for a signal-to-noise ratio of 3) and sensitivity were found to be 92 nM and 0.89 μA/μM, respectively. Furthermore, the diffusion coefficient of hydrogen peroxide (D) and catalytic rate constant (kcat) were calculated.  相似文献   
2.
3.
Energy calculations have been carried out on high-symmetry cuboctahedral Ni-Al nanoalloy clusters, of varying composition, with the interatomic interactions modelled by the Gupta many-body potential. Relaxations of cuboctahedral fragments cut from the bulk lattice of Ni3Al, with 13-561 atoms, were undertaken, as were relaxations of high symmetry clusters with 55 and 147 atoms. The lowest energy isomers were found to be dominated by three factors: the tendency toward mixing due to the favourable energy of mixing, ΔmixE; the size difference between nickel and aluminium; and the higher cohesive and surface energy of nickel compared to aluminium. The latter two factors favour Al-segregation to the surface. The most stable Ni:Al composition approaches 3:1 for larger clusters.  相似文献   
4.
Uranium has been defined in material research engineering field as one of the most energetic radioactive elements in the entire Mendeleev periodic table. The manipulation of uranium needs higher theories and sophisticated apparatus even in nuclear energy extraction or in many other chemical applications. Above the nuclear exploitation level, the chemical conventional approaches used, require a higher temperature and pressure to control the destination of ionic form. However, it has been discovered later that at biological scale, the manipulation of this actinide is possible under friendly conditions. The review summarizes the relevant properties of uranium element and a brief characterization of nanoparticles, based on some structural techniques. These techniques reveal the common link between chemical approaches and biological assistance in nanoparticles. Also, those biological entities have been able to get it after reduction. Uranium is known for its ability to destroy ductile materials. So, if biological cell can really reduce uranium, then how does it work?  相似文献   
5.
6.
Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.  相似文献   
7.
Nanobiotechnology provides novel set of tools to manipulate and enhance crop production using nanoparticles, nanofibres, nanoemulsions, and nanocapsules. Nanomaterials provide a platform to deliver agrochemicals and various macromolecules needed for plant growth enhancement and resistance to stresses. Smart delivery of agrochemicals increases the yield by optimizing water and nutrient conditions. Another added advantage is controlled release and site-directed delivery of agrochemicals. Further enhancement in quality and quantity in agriculture can be achieved by nanoparticle-mediated gene transformation and delivery of macromolecules that induces gene expression in plants. Various types of nanomaterials have been tested so far and the results have been promising in terms of productivity and quality enhancement.  相似文献   
8.
摘要:荧光免疫吸附检测技术利用荧光物质标记识别分子,基于待测物与识别分子的特异性结合对待测物进行定性定量分析,具有操作简单、耗时少、成本低、稳定性好等优点。随着纳米材料的飞速发展及其在荧光免疫吸附检测技术中的广泛应用,该技术在生物检测的领域具有更加广阔的应用前景。本文介绍了量子点、碳点、稀土上转换纳米粒子、聚集诱导发光材料等新型发光材料的光学性能特点以及将其构建新型荧光免疫吸附检测平台,综述了近年来基于这些新型发光材料构建荧光免疫吸附检测平台对蛋白、核酸、病毒、细菌和小分子霉菌毒素等物质检测的研究进展,并讨论了该技术在未来的发展过程中需要解决的问题,包括进一步提高自动化水平争取实现实时检测,以及加快检测技术在诊断领域的临床转化等,希望本文的系统介绍可以助力高性能荧光免疫吸附检测技术的发展。  相似文献   
9.
Plant secondary metabolites have been recently used for the synthesis of different nanoparticles. The present investigation aimed at evaluating the effect of gold (AuNPs) and silver (AgNPs) nanoparticles synthesized using Acalypha fruticosa leaf extracts to control the mosquito Culex pipiens. The A. fruticosa AuNPs and AgNPs spectra displayed their maximum absorption at 550 nm and 440 nm, respectively. The infrared spectra revealed different functional groups related to different chemical compounds. The larval mortality of aqueous leaf extract of A. fruticosa was 499.54 ppm (LC50) and 1734.06 ppm (LC90) after 24 h of treatment. This study revealed that AuNP (LC50, 30.2 and LC90, 104.83 ppm) and AgNP (LC50, 52.86 and LC90, 157.227 ppm) preparations were highly effective compared to the A. fruticosa extract alone and also more affordable, as a smaller amount was required. The present findings show the potential larvicidal effect of the synthesized AuNPs and AgNPs for the control of mosquito-mediated disease transmission.  相似文献   
10.
PurposeMulticellular tumor spheroids are realistic in-vitro systems used in radiation biology research to study the effect of anticancer drugs or to evaluate the resistance of cancer cells under specific conditions. When combining the modeling of spheroids together with the simulation of radiation using Monte Carlo methods, one could estimate cell and DNA damage to be compared with experimental data. We developed a Cell Population (CPOP) modeler combined to Geant4 simulations in order to tackle how energy depositions are allocated to cells, especially when enhancing radiation outcomes using high-Z nanoparticles. CPOP manages to model large three-dimensional cell populations with independent deformable cells described with their nucleus, cytoplasm and membranes together with force law systems to manage cell–cell interactions.MethodsCPOP is an opensource platform written in C++. It is divided into two main libraries: a “Modeler” library, for cell geometry modeling using meshes, and a Multi Agent System (MAS) library, simulating all agent (cell) interactions among the population. CPOP is fully interfaced with the Geant4 Monte Carlo toolkit and is able to directly launch Geant4 simulations after compilation.We modeled a full and realistic 3D cell population from SK-MEL28 melanoma cell population cultured experimentally. The spheroid diameter of 550 ± 40 µm corresponds to a population of approximately 1000 cells having a diameter of 17.2 ± 2.5 µm and a nucleus diameter of 11.2 ± 2.0 µm. We decided to reproduce cell irradiations performed with a X-RAD 320 Biological Irradiator (Precision XRay Inc., North Branford, CT).ResultsWe simulated the energy spectrum of secondary particles generated in the vicinity of the spheroid and plotted the different energy spectra recovered internally to the spheroid. We evaluated also the impact of AGuIX (Gadolinium) nanoparticles modeled into the spheroid with their corresponding secondary energy spectra.ConclusionsWe succeeded into modeling cell populations and combined them with Geant4 simulations. The next step will be to integrate DNA geometrical models into cell nuclei and to use the Geant4-DNA physics and radiolysis modeling capabilities in order to evaluate early strand breaks induced on DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号