全文获取类型
收费全文 | 225篇 |
免费 | 11篇 |
国内免费 | 4篇 |
专业分类
240篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 7篇 |
2021年 | 7篇 |
2020年 | 6篇 |
2019年 | 5篇 |
2018年 | 6篇 |
2017年 | 5篇 |
2016年 | 2篇 |
2015年 | 9篇 |
2014年 | 5篇 |
2013年 | 12篇 |
2012年 | 9篇 |
2011年 | 37篇 |
2010年 | 8篇 |
2009年 | 8篇 |
2008年 | 15篇 |
2007年 | 8篇 |
2006年 | 12篇 |
2005年 | 9篇 |
2004年 | 8篇 |
2003年 | 6篇 |
2002年 | 7篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 4篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1982年 | 3篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有240条查询结果,搜索用时 0 毫秒
1.
2.
We have previously characterized the biogenesis of the human CD8α protein expressed in rat epithelial cells. We now describe the biosynthesis, post-translational maturation and hetero-oligomeric assembly of the human CD8α/p56lck protein complex in stable transfectants obtained from the same cell line. There were no differences in the myristilation of p56lck, or in the dimerization, O-glycosylation and transport to the plasma membrane of CD8α, between cells expressing either one or both proteins. In the doubly expressing cells, dimeric forms of CD8α established hetero-oligomeric complexes with p56lck, as revealed by co-immunoprecipitation assays performed with anti-CD8α antibody. Moreover, p56lck bound in these hetero-oligomeric complexes was endowed with auto- and hetero-phosphorylating activity. The present study shows that: (1) the newly synthesized p56lck binds rapidly to CD8α and most of the p56lck is bound to CD8α at steady state; (2) CD8α/p56lck protein complexes are formed at internal membranes as well as at the plasma membrane; and (3) about 50% of complexed p56lck reaches the cell surface. 相似文献
3.
This review summarizes data on the properties of L-lysine -oxidase, an enzyme that belongs to the group of oxidases of L-amino acids. This enzyme acts virtually only on L-lysine with a rather low K
m yielding -keto--aminocaproic acid. The decrease in the level of the essential amino acid L-lysine and the formation of hydrogen peroxide during the reaction possibly provide the basis for the unique properties of L-lysine -oxidase: cytotoxic, antitumor, antimetastatic, antiinvasive, antibacterial, and antiviral activities, as well as an immunomodulating effect. Native L-lysine -oxidase and its immobilized forms are promising tools for determination of concentration of L-lysine in various biological materials. 相似文献
4.
Paula Clemente Susana Peralta Alberto Cruz-Bermudez Lucía Echevarría Flavia Fontanesi Antoni Barrientos Miguel A. Fernandez-Moreno Rafael Garesse 《The Journal of biological chemistry》2013,288(12):8321-8331
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency. 相似文献
5.
6.
gp190 is a glycoprotein expressed on the cell surface of several human colon carcinoma cells in culture, on epithelial cells of fetal colon, but not on the normal mucosa of adult colon; thus it is referred to as an oncofetal crypt cell antigen. We report the characterisation of O[emsp4 ]-linked glycans carried by gp190 synthesised by [3H]glucosamine-labelled Caco-2 cells at the confluence (undifferentiated cells) and at three weeks of postconfluence (differentiated cells). By using a specific monoclonal antibody, gp190 was isolated and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The mobility of gp190 from differentiated cells was found to be lower than that from undifferentiated cells, suggesting a more extensive glycosylation process in the former glycoprotein. The major results of the glycan characterisation have been as follows: (i) gp190 carries mainly, if not exclusively, O-linked glycans with the core-2 structure; (ii) the elongation with N-acetyllactosamine units of the Gal1,4GlcNAc1,6(Gal1,3)GalNAc tetrasaccharide predominates in gp190 synthesised by differentiated cells, whereas the direct 2,3sialylation of the tetrasaccharide is prevalent in gp190 synthesised by undifferentiated cells. The increment in the core-2 1,6GlcNAc-transferase activity under the Caco-2 differentiation process may be relevant in producing the larger occurrence of polylactosaminoglycans in gp190 from differentiated cells. Since no change in the activity of the 2,3sialyltransferases upon cell differentiation was observed, we suggest that the lower 2,3sialylation in gp190 synthesised by polarised cells might be due to a changed transit-rate through the distal Golgi apparatus. 相似文献
7.
The system comprising bacteriophage (phage) lambda and the bacterium E. coli has long served as a paradigm for cell-fate determination. Following the simultaneous infection of the cell by a number of phages, one of two pathways is chosen: lytic (virulent) or lysogenic (dormant). We recently developed a method for fluorescently labeling individual phages, and were able to examine the post-infection decision in real-time under the microscope, at the level of individual phages and cells. Here, we describe the full procedure for performing the infection experiments described in our earlier work. This includes the creation of fluorescent phages, infection of the cells, imaging under the microscope and data analysis. The fluorescent phage is a "hybrid", co-expressing wild- type and YFP-fusion versions of the capsid gpD protein. A crude phage lysate is first obtained by inducing a lysogen of the gpD-EYFP (Enhanced Yellow Fluorescent Protein) phage, harboring a plasmid expressing wild type gpD. A series of purification steps are then performed, followed by DAPI-labeling and imaging under the microscope. This is done in order to verify the uniformity, DNA packaging efficiency, fluorescence signal and structural stability of the phage stock. The initial adsorption of phages to bacteria is performed on ice, then followed by a short incubation at 35°C to trigger viral DNA injection. The phage/bacteria mixture is then moved to the surface of a thin nutrient agar slab, covered with a coverslip and imaged under an epifluorescence microscope. The post-infection process is followed for 4 hr, at 10 min interval. Multiple stage positions are tracked such that ~100 cell infections can be traced in a single experiment. At each position and time point, images are acquired in the phase-contrast and red and green fluorescent channels. The phase-contrast image is used later for automated cell recognition while the fluorescent channels are used to characterize the infection outcome: production of new fluorescent phages (green) followed by cell lysis, or expression of lysogeny factors (red) followed by resumed cell growth and division. The acquired time-lapse movies are processed using a combination of manual and automated methods. Data analysis results in the identification of infection parameters for each infection event (e.g. number and positions of infecting phages) as well as infection outcome (lysis/lysogeny). Additional parameters can be extracted if desired. 相似文献
8.
9.
Binding of arachidonic acid to myeloid-related proteins (S100A8/A9) enhances phagocytic NADPH oxidase activation 总被引:1,自引:0,他引:1
Activation of the O(2)(-) generating NADPH oxidase of phagocytes results from the assembly of the membrane-bound flavocytochrome b(558) with cytosolic proteins, p67(phox), p47(phox), and Rac. However, it has been recently reported that the arachidonic acid- and calcium-binding heterodimer S100A8/A9, abundant in neutrophil cytosol, influences the activation process. In a semi-recombinant system comprising neutrophil membranes, recombinant proteins, p67(phox), p47(phox), GTPgamma S-loaded Rac2, and arachidonic acid (AA), both the rate and the extent of the oxidase activation were increased by S100A8/A9, provided it was preloaded with AA. Binding of [(14)C]AA to S100A8/A9 was potentiated by recombinant cytosolic phox proteins and GTPgammaS, suggesting the formation of a complex, comprising oxidase activating proteins and S100A8/A9, with a greater affinity for AA. The rate constant of oxidase activation was not increased by AA-loaded S100A8/A9, whereas the maximal oxidase activity elicited was twice as high. AA-loaded S100A8/A9 increases oxidase activation probably by decreasing the deactivation rate. 相似文献
10.