首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   1篇
  国内免费   7篇
  2023年   5篇
  2021年   10篇
  2020年   11篇
  2019年   4篇
  2018年   6篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有166条查询结果,搜索用时 500 毫秒
1.
Potassium iodate (KIO3) and potassium iodide (KI) are the major salt iodization agents used worldwide. Unlike iodide (I), iodate (IO3) should be reduced to I before it can be effectively used by the thyroid. In this study, we developed a new method for analyzing IO3 and I in tissue homogenates using high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC–ICP-MS). We further applied the method to demonstrate the KIO3 reduction process by tissues in vitro. The effects of KIO3 on the total antioxidative activity (TAA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were also investigated here. Finally, we found that IO3 can be reduced to I by tissue homogenates and IO3 irreversibly decreases the antioxidant capability of tissues. Our studies suggest that KIO3 might have a big effect on the redox balance of tissue and would further result in oxidative stress of organisms.  相似文献   
2.
Interest in the biological behavior of a growing number of elements, along with increasing recognition of the importance of interactions among them, demands a versatile and reliable technique for multielement analysis of biological samples. Significant improvements over the sensitivity achieved with conventional inductively coupled plasma (ICP) optical emission spectrometries have been realized with the introduction of quadrupole mass spectrometry (MS) for detection of ions in the plasma. The hybrid technique of ICP-MS promises to be a method of rapid multielement analysis, at detection limits that approach or surpass those of other technologies. However, the application of ICP-MS to analyses of biological interest is truly in its infancy. Here we report the use of ICP-MS for the determination of more than 30 elements of biological interest in a tissue and a biological fluid (rat liver and serum, respectively). Experimental values of the elements serve as a basis for discussion of analytical protocols, performance criteria, and certain problems peculiar to ICP-MS.  相似文献   
3.
Contamination in a trace element laboratory can come from a variety of sources, including laboratory gloves. Therefore, vinyl and latex gloves were obtained from as many manufacturers as would supply gloves. These gloves were either prepared for acid-washing and subsequent soaking in an acid solution, or immersed in an acid solution for a duration of either 1 min or 1 h. Incubation washes were analyzed for a variety of trace elements by flame atomic abosrption spectroscopy (AAS) or inductively coupled mass spectrometry (ICP-MS). Results indicated that only three brands of vinyl gloves were acceptable for use in a trace element laboratory, whereas others had contamination of different elements. Latex gloves contained such high levels of biologically important elements that they were not considered suitable for routine trace element work. Vinyl gloves of choice should be routinely acid-washed before use in a trace element laboratory.  相似文献   
4.
Uptake of 24Mg by excised pine roots: A preliminary study   总被引:1,自引:0,他引:1  
Uptake of 24Mg by excised roots of Pinus sylvestris L. during up to 4 h long incubations in 99.9 atom % 24Mg (50 M) was measured by ICP-MS. A rapid initial uptake phase (30 min) was followed by a slower uptake. This was interpreted as a shift from a phase dominated by saturable ion exchange (free space uptake), to a non-saturable phase, during which the rate of uptake was 0.077±0.0.012 mol Mg g–1 (d.wt.) h–1. The metabolic uncoupler DNP (2,4-dinitrophenol) at 50 M decreased the Mg uptake rate by 35% only, but the effect of DNP was significant (p<0.01). Several problems related to a high variability in the experimental material were encountered, and further refinement of this approach in studies of plant Mg uptake is suggested.  相似文献   
5.
BackgroundMetals are a minor constituent in honey, but they have been suggested to be a potential tool to characterize honeys according to their botanical or geographical origin.MethodsA total of 40 metals were analyzed by Inductively Coupled Plasma-Mass Spectrometry in monofloral and multifloral honeys from Northwestern Italy. PCA and ANOVA were used to discriminate honeys according to the various floral types.ResultsThe highest levels of trace elements and rare earth elements (REEs) were found in chestnut honey, while the lowest concentrations were recorded in acacia and rhododendron honeys. Rubidium and aluminum were the most represented nonessential elements, while manganese, iron, zinc and copper had the highest values of the essential elements. Potentially toxic elements arsenic, cadmium and lead were close to or below the limit of quantification.ConclusionsThe present study showed significant differences in metal concentrations according to honey floral type, reflecting the strong influence of botanical origin on the chemical composition of this particular food.  相似文献   
6.
BackgroundSeafood present important advantages for human nutrition, but it can also accumulate high levels of toxic and potentially toxic elements. Culinary treatments could influence seafood chemical element content and element bioavailability. In this study, the influence of culinary treatments on the total concentration and on the bioavailability of Cd, Cr, Cu and Pb in shark, shrimp, squid, oyster, and scallop was assessed.MethodsBoiling, frying, and sautéing with or without seasonings (salt, lemon juice and garlic) were evaluated. Total concentration and bioavailability of Cd, Cr, Cu and Pb in seafood after all these culinary treatments were compared with those in uncooked samples. Analytes were determined by triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). An alternative to express the results avoiding underestimated or overestimated values was proposed.ResultsThe analytes concentration in seafood without culinary treatment varied from 0.0030 μg g−1 (shrimp) to 0.338 μg g−1 (oyster) for Cd; 0.010 μg g−1 (squid) to 0.036 μg g−1 (oyster) for Cr; 0.088 μg g−1 (scallop) to 8.63 μg g−1 (oyster) for Cu, and < 0.005 μg g−1 (shrimp, squid and oyster) to 0.020 μg g−1 (shark) for Pb. Only Cd (in scallop) was influenced by culinary treatments (reduction from 37 to 53 % after boiling, frying, and sautéing). Bioavailability percentage varied from 11% (oyster) for Cd; 18% (oyster) to 41% (shark) for Cr; 6% (shark) for Cu, and 8% (oyster) for Pb. Bioavailability percentage was not influenced by culinary treatments.ConclusionCadmium concentration was reduced in scallop after some culinary treatments (reduction o 37-53% after boiling, frying, and sautéing), but bioavailability percentage was not influenced. The employed analytical method was adequate for the purpose, presenting import results for food safety assessment about the influence of culinary treatments on metals concentration and bioavailability in seafood.  相似文献   
7.
Samples of foraged fruits from a former industrial site have been analyzed for potentially toxic elements (PTEs) (i.e., As, Cd, Cr, Cu, Ni, Pb, and Zn). The foraged fruit (blackberries, rosehips, and sloes) was gathered over two seasons along with samples of soil from the same sampling areas. All samples were acid digested, using a microwave oven, and then analyzed by inductively coupled plasma mass spectroscopy (ICP-MS). The concentration levels of the selected elements in foraged samples varied between not detectable limits and 24.6 μg/g (Zn). The soil-to-plant transfer factor was assessed for the PTEs. In all cases, the transfer values obtained were less than 1.00, indicating that the majority of the PTEs remains in the soil and that the uptake of PTEs from soil to plant at this site is not significant.  相似文献   
8.

Background

Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.

Methods

Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2 g/kg) 1 h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.

Results

Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60 pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48 h for USPIO and MPIO, respectively.

Conclusions

Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.

General significance

Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.  相似文献   
9.
In this study, HPLC-MS and ICP-MS methods were used for the determination of histidine and nickel in Morus L., Robinia pseudoacacia L., and Populus nigra L. leaves taken from industrial areas including Gaziantep and Bursa cities. In the determination of histidine by HPLC-MS, all of the system parameters such as flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized and found to be 0.2 mL min?1, 70 V, 15 µL, and 20°C, respectively. Under the optimum conditions, histidine was extracted from plant sample by distilled water at 90°C for 30 min. Concentrations of histidine as mg kg?1 were found to be between 2–9 for Morus L., 6–13 for Robinia pseudoacacia L., and 2–10 for Populus nigra L. Concentrations of nickel were in the ranges of 5–10 mg kg?1 for Morus L., 3–10 mg kg?1 for Robinia pseudoacacia L., and 0.6–4 mg kg?1 for Populus nigra L. A significant linear correlation (r = 0.78) between histidine and Ni was observed for Populus nigra L., whereas insignificant linear correlation for Robinia pseudoacacia L. (r = 0.22) were seen. Limits of detection (LOD) and quantitation (LOQ) were found to be 0.025 mg Ni L?1 and 0.075 mg Ni L?1, respectively.  相似文献   
10.
The pre-irradiation combustion (PC) of samples to liberate iodine, followed by trapping the iodine on charcoal and quantifying the element by neutron activation analysis (NAA), has been used at the National Institute of Standards and Technology for the determination of iodine in biological materials. The applicability of this technique to numerous environmental and dietary matrices is illustrated by analysis of a range of certified reference materials (CRMs) and a powdered grass material that was prepared as an in-house reference material (RM). Because of the combustion step involved, samples with low or no fat content (e.g., cereal products, selected botanical specimens, and nonfat milk powder) and inorganic materials (e.g., coal fly ash and dried sediments) are more suited for analysis by this method. In general, the results for several types of samples obtained by this method agreed with those obtained by a second radiochemical (R) NAA, as well as by a third method using inductively coupled plasma mass spectrometry (ICP-MS). PC-NAA is a useful technique for determining iodine in biological and environmental samples, especially for verification of iodine results obtained from other methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号