首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   15篇
  国内免费   2篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   12篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   11篇
  2014年   31篇
  2013年   26篇
  2012年   31篇
  2011年   37篇
  2010年   23篇
  2009年   16篇
  2008年   17篇
  2007年   7篇
  2006年   19篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   4篇
  1992年   1篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有376条查询结果,搜索用时 171 毫秒
1.
The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.  相似文献   
2.
Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability. We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.  相似文献   
3.
Abstract: Hippocampal slices were prepared under three conditions: (1) in medium containing glucose and oxygen at 4°C; (2) as in (1), but at 37°C; (3) in medium devoid of glucose and oxygen at 37°C. The rates of recovery to roughly steady-state levels and through 8 h of incubation were monitored for energy metabolite levels and related parameters. In vitro stable values are compared with in situ hippocampal levels. Regardless of the conditions under which slices were prepared, metabolite levels required up to 3 h to stabilize, and these levels were maintained or improved through 8 h of incubation. Further, the maximal concentrations of metabolites were independent of the conditions of slice preparation. Total adenylates and total creatine levels reached 55% of those in vivo. Lactate decreased from the decapitation-induced high levels, but stabilized at concentrations about twice those in rapidly frozen brain. Cyclic AMP and cyclic GMP exhibited peak levels at 30 min of incubation, and cyclic GMP remained elevated for 3 h. Although all three methods of slice preparation resulted in similar metabolite profiles on incubation, the initial decreases in high energy phosphates were delayed by chilling. Most striking, the slices prepared in the absence of glucose and oxygen exhibited much smaller orthodromic evoked potentials in the dentate gyrus. The presence of glucose and oxygen during preparation of the slices appears to be critical to the electrophysiological response of the tissue.  相似文献   
4.
Abstract: Basic fibroblast growth factor (FGF-2) is normally expressed as a cell-associated protein, and accordingly it is not clear how it exerts its action on target cells in vivo. It has been proposed that cells release, by death or other mechanisms, small amounts of FGF-2 that then acts in an autocrine manner. To address the question of whether it is necessary that FGF-2 remain cell associated or needs to be secreted from cells to have biological activity, we expressed the 18-kDa form of FGF-2 in primary fibroblasts as a cell-associated (FGF-2-B) or as a secreted (FGF-2-S) protein. FGF-2 protein is detected in cell lysates and membrane fractions of both cell types, whereas it is present in significant amounts only in the conditioned medium of FGF-2-S cells. No FGF-2 is detected in control (untransfected) cells. FGF-2-S cells also grow faster than the control or FGF-2-B cells. Yet, when evaluated for their ability to promote the survival of embryonic hippocampal neurons in vitro, both the cell types are active, establishing the activity of the transgene product. We conclude that FGF-2 is active when engineered to be expressed as a cell-associated form or secreted from cells.  相似文献   
5.
Abstract: The l - and d -enantiomers of the sulphur-containing amino acids (SAAs)—homocysteate, homocysteine sulphinate, cysteate, cysteine sulphinate, and S-sulphocysteine—stimulated [3H]noradrenaline release from rat hippocampal slices in a concentration-dependent manner. The relative potencies of the l -isomers (EC50 values of 1.05–1.96 mM) were of similar order to that of glutamate (1.56 mM), which was 10-fold lower than that of NMDA (0.15 mM), whereas the d -isomers exhibited a wider range of potencies (0.75 to >5 mM). All stimulatory effects of the SAAs were significantly inhibited by the voltage-sensitive Na+ channel blocker tetrodotoxin (55–71%) and completely blocked by addition of Mg2+ or Co2+ to the incubation medium. All SAA-evoked responses were concentration-dependently antagonized by the selective NMDA receptor antagonist d -(?)-2-amino-5-phosphonopentanoic acid (IC50 values of 3.2–49.5 µM). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, at 100 µM inhibited the [3H]noradrenaline release induced by glutamate and NMDA (65 and 76%, respectively) and by all SAAs studied (65–85%), whereas 10 µM CNQX only inhibited the effects of S-sulpho-l -cysteine and l - and d -homocysteate (33, 32, and 44%, respectively). However, the more selective AMPA/kainic acid receptor antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (100 µM), which did not antagonize the [3H]noradrenaline release induced by glutamate and NMDA, reduced only the S-sulpho-l -cysteine-evoked response (25%). Thus, the stimulation of Ca2+-dependent[3H]noradrenaline release from hippocampal slices elicited by the majority of the SAAs appears to be mediated by the NMDA receptor.  相似文献   
6.
《Fly》2013,7(2):91-98
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease causing the death of motor neurons with consequent muscle atrophy and paralysis. Several neurodegenerative diseases have been modeled in Drosophila and genetic studies on this model organism led to the elucidation of crucial aspects of disease mechanisms. ALS, however, has lagged somewhat behind possibly because of the lack of a suitable genetic model. We were the first to develop a fly model for ALS and over the last few years, we have implemented and used this model for a large scale, unbiased modifier screen. We also report an extensive bioinformatic analysis of the genetic modifiers and we show that most of them are associated in a network of interacting genes controlling known as well as novel cellular processes involved in ALS pathogenesis. A similar analysis for the human homologues of the Drosophila modifiers and the validation of a subset of them in human tissues confirm and expand the significance of the data for the human disease. Finally, we analyze a possible application of the model in the process of therapeutic discovery in ALS and we discuss the importance of novel “non-obvious” models for the disease.  相似文献   
7.
Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment.Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.  相似文献   
8.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   
9.
The dominant glutamate transporter isoform in the mammalian brain, GLT1, exists as at least three splice variants, GLT1a, GLT1b, and GLT1c. GLT1b interacts with the scaffold protein PICK1 (protein interacting with kinase C1), which is implicated in glutamatergic neurotransmission via its regulatory effect on trafficking of AMPA-type glutamate receptors. The 11 extreme C-terminal residues specific for the GLT1b variant are essential for its specific interaction with the PICK1 PDZ domain, but a functional consequence of this interaction has remained unresolved. To identify a functional effect of PICK1 on GLT1a or GLT1b separately, we employed the Xenopus laevis expression system. GLT1a and GLT1b displayed similar electrophysiological properties and EC50 for glutamate. Co-expressed PICK1 localized efficiently to the plasma membrane and resulted in a 5-fold enhancement of the leak current in GLT1b-expressing oocytes with only a minor effect on [3H]glutamate uptake. Three different GLT1 substrates all caused a slow TBOA-sensitive decay in the membrane current upon prolonged application, which provides support for the leak current being mediated by GLT1b itself. Leak and glutamate-evoked currents in GLT1a-expressing oocytes were unaffected by PICK1 co-expression. PKC activation down-regulated GLT1a and GLT1b activity to a similar extent, which was not affected by co-expression of PICK1. In conclusion, PICK1 may not only affect glutamatergic neurotransmission by its regulatory effect on glutamate receptors but may also affect neuronal excitability via an increased GLT1b-mediated leak current. This may be particularly relevant in pathological conditions such as amyotrophic lateral sclerosis and cerebral hypoxia, which are associated with neuronal GLT1b up-regulation.  相似文献   
10.
Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1–359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1–359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5–4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1–359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号