首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   14篇
  2013年   9篇
  2012年   2篇
  2011年   1篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
1.
2.
A primary infection of Salmonella enteritidis causes a spatial-temporal dependent change in the gene expression patterns in the intestine of chickens (Gallus gallus). This is the result of a dynamic intestinal response to adapt to the altered environment and to optimize its ‘health’ and functionality under the new circumstances. By inferring gene association networks (GANs), the complexities of and changes in biological networks can be uncovered. Within such GANs highly interacting (hub) genes can be identified, which are supposed to be high-level regulators connected to multiple processes. By exploring the intestinal expression of genes differing between control and Salmonella infected chicken in a time-dependent manner differences in GANs were found. In control chickens more developmental processes were observed, whereas in infected chickens relatively more processes were associated to ‘defense/pathogen response’. Moreover the conserved protein domains of the identified hub genes in controls were nuclear-associated, whereas hub genes in infected chickens were involved in ‘cellular communication’. The shift in topology and functionality of the intestinal GANs in control and Salmonella infected animals and the identification of GAN-specific hubs is a first step to understand the complexity of biological networks and processes regulating intestinal health and functionality under normal and disturbed conditions.  相似文献   
3.
4.
Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group.  相似文献   
5.
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q < 0.05; enrichment range 1.40–9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans?nosology pathways in diabetes and its co-morbidities.  相似文献   
6.
Understanding miRNAs' regulatory networks and target genes could facilitate the development of therapies for human diseases such as cancer. Although much useful gene expression profiling data for tumor cell lines is available, microarray data for miRNAs and mRNAs in the human HepG2 cell line have only been compared with that of other cell lines separately. The relationship between miRNAs and mRNAs in integrated expression profiles for HepG2 cells is still unknown. To explore the miRNA–mRNA correlations in hepatocellular carcinoma (HCC) cells, we performed miRNA and mRNA expression profiling in HepG2 cells and normal liver HL-7702 cells at the genome scale using next-generation sequencing technology. We identified 193 miRNAs that are differentially expressed in these two cell lines. Of these, 89 miRNAs were down-regulated in HepG2 cells compared with HL-7702 cells, while 104 miRNAs were up-regulated. We also observed 3035 mRNAs that are significantly dys-regulated in HepG2 cells. We then performed an integrated analysis of the expression data for differentially expressed miRNAs and mRNAs and found several miRNA–mRNA pairs that are significantly correlated in HepG2 cells. Further analysis suggested that these differentially expressed genes were enriched in four tumorigenesis-related signaling pathways, namely, ErbB, JAK–STAT, mTOR, and WNT, which until now had not been fully reported. Our results could be helpful in understanding the mechanisms of HCC occurrence and development.  相似文献   
7.
偏头痛相关酶和KEGG通路分析   总被引:1,自引:0,他引:1       下载免费PDF全文
黄瑞  郑珩 《生物信息学》2014,12(3):218-226
搜集与偏头痛相关的编码酶的基因,利用KEGG通路分析目标基因的分布和功能,促进偏头痛遗传学研究和新药靶点研究。以"gene name"AND migraine检索PUBMED数据库,从原始文献中搜集并整理偏头痛相关酶基因数据,用DAVID在线分析工具对数据进行处理。搜索得到31个偏头痛酶基因,对7条KEGG代谢通路进行了分析:色氨酸代谢通路、酪氨酸代谢通路、精氨酸和脯氨酸代谢通路、叶酸一碳单位循环代谢通路、药物代谢通路、外源物质细胞色素P450代谢通路、肾素血管紧张素代谢通路。其中药物代谢通路包括9个药物,又以高选择性5-羟色胺重摄取抑制剂西酞普兰的应用前景最大。DDC、DBH、MTHFD1等6个偏头痛相关基因需要完善多态性研究。CYP450和单胺氧化酶在偏头痛的病理和治疗中都占有重要的地位。通过分析疾病相关酶基因的代谢通路,有助于了解疾病的分子病理基础,并为新药设计提供可靠靶点。  相似文献   
8.
Cancer, being among the most serious diseases, causes many deaths every year. Many investigators have devoted themselves to designing effective treatments for this disease. Cancer always involves abnormal cell growth with the potential to invade or spread to other parts of the body. In contrast, tumor suppressor genes (TSGs) act as guardians to prevent a disordered cell cycle and genomic instability in normal cells. Studies on TSGs can assist in the design of effective treatments against cancer. In this study, we propose a computational method to discover potential TSGs. Based on the known TSGs, a number of candidate genes were selected by applying the shortest path approach in a weighted graph that was constructed using protein–protein interaction network. The analysis of selected genes shows that some of them are new TSGs recently reported in the literature, while others may be novel TSGs.  相似文献   
9.
As is generally assumed, clusters in protein–protein interaction (PPI) networks perform specific, crucial functions in biological systems. Various network community detection methods have been developed to exploit PPI networks in order to identify protein complexes and functional modules. Due to the potential role of various regulatory modes in biological networks, a single method may just apply a single graph property and neglect communities highlighted by other network properties.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号