首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   24篇
  国内免费   4篇
  683篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   12篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   17篇
  2014年   58篇
  2013年   31篇
  2012年   55篇
  2011年   73篇
  2010年   42篇
  2009年   33篇
  2008年   50篇
  2007年   63篇
  2006年   47篇
  2005年   24篇
  2004年   34篇
  2003年   37篇
  2002年   20篇
  2001年   2篇
  2000年   18篇
  1999年   21篇
  1998年   6篇
  1997年   2篇
排序方式: 共有683条查询结果,搜索用时 11 毫秒
1.
Circulating red blood cells (RBCs) undergo aging, a fundamental physiological phenomenon that regulates their turnover. We show that treatment with beta amyloid peptide 1–42 (Aβ) accelerates the occurrence of morphological and biochemical aging markers in human RBCs and influences the cell metabolism leading to intracellular ATP depletion. The morphological pattern has been monitored using Atomic Force Microscopy (AFM) imaging and measuring the RBCs' plasma membrane roughness employed as a morphological parameter capable to provide information on the structure and integrity of the membrane-skeleton. Results evidence that Aβ boosts the development of crenatures and proto-spicules simultaneously to acceleration in the weakening of the cell-cytoskeleton contacts and to the induction of peculiar nanoscale features on the cell membrane. Incubation in the presence of glucose can remove all but the latter Aβ-induced effects.Biochemical data demonstrate that contemporaneously to morphological and structural alterations, Aβ and glucose depletion trigger a complex signaling pathway involving caspase 3, protein kinase C (PKC) and nitric oxide derived metabolites.As a whole, the collected data revealed that, the damaging path induced by Aβ in RBC provide a sequence of morphological and functional intermediates following one another along RBC life span, including: (i) an acceleration in the development of shape alteration typically observed along the RBC's aging; (ii) the development of characteristic membrane features on the plasma membrane and (iii) triggering a complex signaling pathway involving caspase 3, PKC and nitric oxide derived metabolites.  相似文献   
2.
Human wild type (WT) and mutant alpha-synuclein (alpha-syn) genes were overexpressed using a Tet-on expression system in stably transfected dopaminergic MN9D cells. Their overexpression induced caspase-independent and dopamine-related apoptosis not rescued by general caspase inhibitor Z-VAD-FMK. While apoptosis due to overexpression of WT alpha-syn was completely abrogated by a specific tyrosine hydroxylase (TH) inhibitor, alpha-methyl-p-tyrosine (alpha-MT), the inhibitor only partially rescued apoptosis caused by overexpression of alpha-syn mutants. In addition, overexpression of mutants enhanced the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxyldopamine (6-OHDA) to MN9D cells, whereas overexpression of WT protected MN9D cells against MPP+ toxicity, but not against 6-OHDA. We conclude that WT alpha-syn is beneficial to dopaminergic neurons but its overexpression in the presence of endogenous dopamine makes it a potential threat to the cells. In contrast, mutant alpha-syn not only caused the loss of WT protective function but also the gain-of-toxicity which becomes more serious in the presence of dopamine and neurotoxins.  相似文献   
3.
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.  相似文献   
4.
Early events of apoptosis following HSV-1 infection were investigated at the single-cell level using intensified fluorescence digital-imaging microscopy. The results provide evidence that infection of differentiated ND7 neuronlike cells by HSV-1 triggers detectable alterations indicative of physiological changes associated with the early stages of apoptosis. Less than 1 h after infection with HSV-1 (KOS strain) or K26GFP (GFP being fused to HSV-1 capsid protein VP26) we observed (i) moderate decrease in mitochondrial membrane potential (about 20%), (ii) exposure of phosphatidyl serine, (iii) morphological change in the mitochondria that became spherical instead of filamentous, and (iv) activation of caspase-8. Within 3 h changes reverted to normal, which indicated that apoptosis was counteracted very early following HSV-1 infection. Similar results were obtained with KOS-TK27GFP, lacking TK and UL24 proteins, suggesting that TK and UL24 play no role in apoptosis. In Vero cells mitochondrial changes characteristic of the apoptotic process were not observed following HSV-1 infection. The UV-inactivated K26GFP had the capacity to induce apoptosis in neuronlike cells. This real-time multiparametric analysis, in combination with relevant viral mutants, could be a useful approach for dissecting the roles of various viral genes in modulating apoptotic pathways during infection.  相似文献   
5.
水飞蓟宾诱导肺腺癌Anip973 细胞凋亡的分子机制研究   总被引:1,自引:0,他引:1  
目的:探讨水飞蓟宾诱导肺腺癌Anip973细胞系细胞凋亡的分子机制。方法:采用MTT法、倒置显微镜和电子显微镜等形态学检测以及流式细胞仪(FCM)技术检测、DNALadder分析、凋亡分子PARP的表达检测细胞凋亡,同时进行凋亡相关蛋白Bax、Bcl-2、caspase-3和caspase-9表达活性分析。结果:(1)水飞蓟宾对人肺腺癌Anip973细胞系细胞的增殖有显著抑制作用;(2)水飞蓟宾作用Anip973细胞48h后,随着浓度的增加,倒置显微镜下可见细胞数目减少,胞体变小、变圆,到高浓度时出现较多的死亡细胞;(3)扫描电镜观察发现,随着水飞蓟宾作用浓度的增加,Anip973细胞中出现增多的凋亡细胞,凋亡细胞表现出典型的超微结构特征;(4)流式细胞仪检测的结果发现,随着药物作用时间的延长,Anip973细胞的G1期细胞比例增多,S期细胞明显减少,G2期细胞略有减少,并出现明显的凋亡峰。(5)水飞蓟宾作用后的Anip973细胞出现明显的DNALadder和PARP降解增加等凋亡特征;(6)水飞蓟宾作用后,Anip973细胞中的凋亡相关蛋白Bax表达增加、caspase-3和caspase-9酶活性增加,而Bcl-2表达降低。结论:水飞蓟宾在体外有抑制人肺腺癌细胞Anip973的增殖作用,并通过激活线粒体依赖的caspase凋亡通路,诱导其凋亡。  相似文献   
6.
Green tea is a rich source of polyphenols, and (-)-epigallocatechin-3-gallate (EGCG) is a major constituent of green tea polyphenols. In the present study, we investigated the effect of EGCG on apoptosis induced by irradiation in the human keratinocytic cell line HaCaT. Irradiation by gamma-ray induced apoptosis with concomitant cleavage of caspase-3 and its in vivo substrate poly(ADP-ribose) polymerase. Treatment of cells with EGCG inhibited irradiation-induced apoptosis as detected by Hoechst staining and internucleosomal cleavage of DNA, and prevented the cleavage of these proteins by irradiation. We also found that the treatment of cells with EGCG alone suppressed cell growth and induced apoptosis in these cells. Our results suggest that EGCG inhibits irradiation-induced apoptosis by inactivating the caspase pathway in HaCaT cells. Our study also indicates that EGCG has a dual effect on the survival of these keratinocytes.  相似文献   
7.
The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.  相似文献   
8.

Background

CHK1 is an important effector kinase that regulates the cell cycle checkpoint. Previously, we showed that CHK1 is cleaved in a caspase (CASP)-dependent manner during DNA damage-induced programmed cell death (PCD) and have examined its physiological roles.

Methods and results

In this study, we investigated the behavior of CHK1 in PCD. Firstly, we found that CHK1 is cleaved at three sites in PCD, and all cleavages were inhibited by the co-treatment of a pan-CASP inhibitor or serine protease inhibitors. We also showed that CHK1 is cleaved by CASP3 and/or CASP7 recognizing at 296SNLD299 and 348TCPD351, and that the cleavage results in the enhancement of CHK1 kinase activity. Furthermore, as a result of the characterization of cleavage sites by site-directed mutagenesis and an analysis performed using deletion mutants, we identified 320EPRT323 as an additional cleavage recognition sequence. Considering the consensus sequence cleaved by CASP, it is likely that CHK1 is cleaved by non-CASP family protease(s) recognizing at 320EPRT323. Additionally, the cleavage catalyzed by the 320EPRT323 protease(s) markedly and specifically increased when U2OS cells synchronized into G1 phase were induced to PCD by cisplatin treatment.

Conclusion

CHK1 cleavage is directly and indirectly regulated by CASP and non-CASP family proteases including serine protease(s) and the “320EPRT323 protease(s).” Furthermore, 320EPRT323 cleavage of CHK1 occurs efficiently in PCD which is induced at the G1 phase by DNA damage.

General significance

CASP and non-CASP family proteases intricately regulate cleavage for up-regulation of CHK1 kinase activity during PCD.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号