首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   7篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2015年   3篇
  2014年   6篇
  2013年   12篇
  2012年   6篇
  2011年   13篇
  2010年   9篇
  2009年   11篇
  2008年   13篇
  2007年   12篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   13篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1970年   1篇
排序方式: 共有190条查询结果,搜索用时 140 毫秒
1.
Summary The sequence of the synthesis and transport of the organic matrix of spicules has been elucidated in the gorgonian Leptogorgia virgulata by use of 3H-aspartic acid as the tracer in electron-microscopic autoradiography. The entire process of matrix synthesis and transport takes approximately 2 h. It seems that the protein moiety of the organic matrix is synthesized in the RER prior to 5 min following the initial 10 min incubation in the tracer. At the 5 min chase the label is moving from the RER to the Golgi complexes where the carbohydrate moiety of the matrix is presumed to be synthesized. At the 5 to 15 min chases the label is transported out of the Golgi complexes via Golgi vesicles. This phase continues for 30 min. From 60 to 120 min the 3H-aspartic acid moves to the spicules. After 120 min the majority of the label has moved into the spicules. Silver grain counts over both multivesicular and electron-dense bodies remain at relatively low and constant levels over 4 h indicating that neither organelle is involved in the synthesis and transport of the organic matrix.Contribution No 512; Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina, Columbia, South Carolina 29208, USA  相似文献   
2.
Summary The cartilage matrix in which the early calcium salts are deposited has been studied in the tibial epiphyses and in the costo-chondral junctions of 30-day-old guinea pigs. The results may be summarized as follows:(1) Structures of globular shape (globules) are to be found throughout the entire epiphyseal plate. (2) They have a homogeneous matrix and are bounded by a membrane. (3) Early calcification occurs in globules. Calcification of collagen fibrils seems to occur later. (4) The earliest mineral deposited would seem to consist of tiny granules about 20 Å in diameter. Then apatite crystals are laid down, initially in small clusters and later filling the globules completely. (5) The globules are strongly osmiophilic. They seem to contain a fair amount of neutral polysaccharides, but no acid polysaccharides except a coating on their outer membrane. Hyaluronidase digestion does not affect globules. Papain digestion makes them more reactive to uranium and lead. (6) Globules are of cellular origin but they are almost certainly not pre-formed in the chondrocytes. Finally, the present paper advances the hypothesis that some globules derive from degenerating chondrocytes and others from the processes of normal chondrocytes.The author is indebted to Mr. A. Benvenuti for his technical assistance. This work was supported by a grant from the Italian Research Council.  相似文献   
3.
Previous investigations concerned with in vitro osteogenesis and mineralization have revealed some indication of a participation of cell necroses in the course of calcification. These observations were confirmed by in vivo investigations on desmoid ossification in fetal mouse calvariae, where abundant necrotic osteoblasts were found at the mineralization border and in the osteoid. In the present study, ossification of long bone cortices from fetal mice was investigated by use of electron microscopy. Specimens obtained from the collection of the Institute of Anatomy, Free University of Berlin (mouse fetuses, forearm; rat fetuses, forearm) were reinvestigated for control purposes. In all cases, mineralization of osteoid was accompanied by cell necroses. Cell degeneration was characterized by swelling of the endoplasmic reticulum and loss of the plasma membrane resulting in freely distributed vesicular structures. Cell debris was incorporated within the mineral. Initially, cell necroses in the perichondrium occurred in the region surrounding the hypertrophic cartilage and the matrix of which showed spots of endochondral mineralization. Necrotic osteoblasts occurred simultaneously with mineralization of the osteoid. During further ossification of the long bone cortices, the number of necrotic cells increased markedly. In addition to necrotic cells, healthy osteoblasts, osteocytes and perichondral tissue were present, indicating that an artifact can be excluded. The importance of cell necroses in the process of mineralization is as yet unclear. Possibly, the cells act as calcium and/or phosphate stores, which are liberated by cell death to increase the amount of mineral constituents at sites of mineralization.  相似文献   
4.
Summary The diversity of calcified structures found in protists, the mechanisms utilized to form these structures, and the role these structures play in the taxonomy and systematics of the protists are presented. The two most frequently studied orders of protists which produce calcified structures, the coccolithophorids and foraminifera, are featured. However, consideration is given to the less known and least studied organisms.  相似文献   
5.
The extra-thecal epithelia of cryofixed undecalcified, freeze-substituted polyps of the scleractinian corals Galaxea fascicularis and Tubastrea faulkneri and axial and basal polyps of Acropora formosa have been examined, in anhydrously prepared thick slices, by confocal laser scanning light microscopy. The avoidance of chemical fixation and decalcification makes it possible to determine whether previously seen structures are real or artefactual products of swelling, shrinkage and distortion. All of the epithelia of all the corals examined are characterised by well defined intercellular spaces. Mucocytes are present in all cell layers in Galaxea and Tubastrea but are not present in any cell layers in the axial polyp of Acropora although they are abundant in the oral ectoderm of the basal polyps in this coral. Zooxanthellae are absent in Tubastrea, the epithelia of the exert septa of Galaxea and the axial polyp of Acropora. The calicoblastic ectoderm is generally composed of thin squamous cells with large intercellular spaces. At rapidly calcifying regions such as the tips of the exert septa of Galaxea, the calicoblastic cells are elongated with extensive arborisation of the basal regions of the cells. They are separated by large intercellular spaces and contain numerous fluorescent granules. The apical regions of these cells appear to be closely applied to the surface of the skeleton. There is no evidence of a space between the apical region of the calicoblastic cells and the skeleton.  相似文献   
6.
Summary Scale formation in Cyprinodon variegatus was found to be initiated at about 26 to 30 days after hatching. Ultrastructural investigation revealed that within 4 to 6 h in the first-formed scales the marginal cells begin to flatten and differentiate into osteogenic cells, which later change to osteoblasts and fibroblasts. These cells are separated from the surrounding epithelial cells by a basal lamina. The osteoid is formed by the marginal and osteogenic cells; the osseous layer by the osteoblasts; and the fibrillary plate by the fibroblasts.The osteoid is formed within 2 to 3 h after the initiation of the scale, and within 20 to 24 h the osseous layer is formed. Hydroxyapatite crystals are deposited in the matrix of the osseous layer without apparent association with collagen fibers. No matrix vesicles or dense bodies are evident at the sites of calcification. The fibrillary plate arises 18 to 20 h after the initiation of the scale. It is also partially calcified, but not before the third week of scale formation. The crystals develop almost exclusively between the collagen fibers at the extreme edge of the calcifying front, but solid calcification of the fibers results with further growth of the crystals. The fibroblasts appear to participate in calcification of the fibrillary plate.Contribution No. 332, Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina, Columbia, South Carolina, 29208, USA  相似文献   
7.
The calcifying cave inhabitant atmophytic blue-green algaGeitleria calcarea is reported from new localities in Florida and in the Cook Islands.—G. floridana n. sp., is described from caves in Florida. The calcified sheath has the shape of a quadratic prism and is built of crystalline acicular subunits about 0.1 µm in diameter. The subunits mostly form a rhombic lattice pattern but in some cases, they are not distinguishable and then the surface of the sheath is smooth.This paper is dedicated with gratitude to my former teacher, Prof. Dr.Lothar Geitler, for his 80th birthday.  相似文献   
8.
Using the fluorescent dyes calcein and alcian blue, we stained the F3 generation of chemically (ENU) mutagenized zebrafish embryos and larvae, and screened for mutants with defects in bone development. We identified a mutant line, bone calcification slow (bcs), which showed delayed axial vertebra calcification during development. Before 4–5 days post-fertilization (dpf), the bcs embryos did not display obvious abnormalities in bone development (i.e., normal number, size and shape of cartilage and vertebrae). At 5–6 dpf, when vertebrae calcification starts, bcs embryos began to show defects. At 7 dpf, for example, in most of the bcs embryos examined, calcein staining revealed no signals of vertebrae mineralization, whereas during the same developmental stages, 2–14 mineralized vertebrae were observed in wild-type animals. Decreases in the number of calcified vertebrae were also observed in bcs mutants when examined at 9 and 11 dpf, respectively. Interestingly, by 13 dpf the defects in bcs mutants were no longer evident. There were no significant differences in the number of calcified vertebrae between wild-type and mutant animals. We examined the expression of bone development marker genes (e.g., Sox9b, Bmp2b, and Cyp26b1, which play important roles in bone formation and calcification). In mutant fish, we observed slight increases in Sox9b expression, no alterations in Bmp2b expression, but significant increases in Cyp26b1 expression. Together, the data suggest that bcs delays axial skeletal calcification, but does not affect bone formation and maturation.  相似文献   
9.
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near‐ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade‐off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号