首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   40篇
  国内免费   83篇
  693篇
  2023年   6篇
  2022年   12篇
  2021年   12篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   4篇
  2015年   18篇
  2014年   14篇
  2013年   34篇
  2012年   15篇
  2011年   12篇
  2010年   25篇
  2009年   29篇
  2008年   24篇
  2007年   37篇
  2006年   26篇
  2005年   26篇
  2004年   48篇
  2003年   25篇
  2002年   26篇
  2001年   24篇
  2000年   12篇
  1999年   15篇
  1998年   25篇
  1997年   20篇
  1996年   20篇
  1995年   15篇
  1994年   18篇
  1993年   23篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   8篇
  1987年   3篇
  1986年   8篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1975年   2篇
  1973年   1篇
排序方式: 共有693条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
ZINC TOLERANCE IN BETULA   总被引:4,自引:2,他引:2  
  相似文献   
5.
6.
At altitudes between 1300 m to 2100 m in the Etna massif (Sicily), an endemic species of theBetula genus,Betula aetnensis Rafin, grows in a well-defined microclimatical context. Aboveground biomass and nutrient content studies within one stand revealed no significant differences from the otherBetula species, normally found in colder more temperate climate regions.Throughout the studied sites, biomass production, nutrient cycling and various structural or physiological characteristics (leaf area index) varied very little.Other researches indicate that the originality ofBetula aetnensis lies more in the histological or anatomical characteristics of its water conducting system which enables the species to adapt to Mediterranean-climate summer droughts in the Etna massif.
Riassunto Sull'Etna, tra 1300 e 2100 m d'altitudine, in una zona microclimaticamente ben definita del versante nordorientale, si rinviene laBetula aetnensis Rafin.Dallo studio della fitomassa e della mineralomassa aerea del bosco di Monte Baracca, è emerso che non vi sono differenze notevoli con le altre specie indagate del genereBetula, più caratteristiche dei climi temperati e freddi.La produzione di biomassa, cosi come la gestione degli elementi nutritivi, è molto simile ai diversi popolamenti già indagati, cosi come certe caratteistiche strutturali e fisiologiche (leaf area index).L'originalità dellaBetula aetnensis è da ricercarsi nel vantaggio che ne ricava, a livello endogeno, sfruttando le caratteristiche istologiche ed anatomiche del suo apparato conduttore, che le consentono un efficace ed eccellente adattamento alle condizioni di siccità estive particolari del clima mediterraneo del vulcano.
  相似文献   
7.
Summary Bulk soil samples were collected from the top 15 cm of untreated areas adjacent to field fertilizer trials at 2 locations. Amounts of N, P, K, and lime equivalent to the field treatments were mixed with the soil in 15-cm diameter pots. Paper birch (Betula papyrifera March.) trees were grown from seed for a greenhouse bioassay. Height and dry weight of the bioassay seedlings were significantly correlated with 3-year volume growth of 10-year-old paper birch seedlings in the field. Correlation coefficients were 0.88 for height growth and 0.91 for dry weight growth on one site, and 0.72 and 0.63 on the other. With further refinements and observations on a larger number of sites, this bioassay technique should be a valuable tool for estimating potential response to fertilizer by young paper birch in the field, and for ranking the relative productivity of different soils.  相似文献   
8.
9.
Abstract. The characteristics of microhabitats of established Pinus sylvestris and Betula seedlings were studied in a small windthrow gap in a mature P. sylvestris-dominated forest in the Petkeljärvi National Park in eastern Finland. Seedlings were strongly clustered in disturbed microhabitats, particularly uprooting pits and mounds, formed by tree falls. They covered 3% of the 0.3.ha study area consisting of the gap and some of the forest edge. Although Betula occurred only as scattered individuals in the dominant canopy layer of the forest, it accounted for 30% of the seedlings found in the study area. Betula regeneration was almost completely restricted to pits and mounds, where 91% of the seedlings were found. Uprooting spots were also the most important regeneration microhabitats for Pinus, where 60% of the seedlings grew, even though the seedlings were found in other substrates as well, particularly on sufficiently decomposed coarse wood. Undisturbed field- and bottom-layer vegetation had effectively hindered tree seedling establishment, which emphasises the role of soil disturbance for regeneration. While the establishment of seedlings was found to be clearly determined by the availability of favourable regeneration microhabitats, the early growth of seedlings was affected by a complex interaction of environmental variables, including the type of microhabitat, radiation environment and interferences caused by competing seedlings and adjacent trees. In the most important regeneration microhabitats, i.e. in uprooting pits and on mounds, the distributions of the local elevations of Pinus and Betula seedlings were different. Pinus seedlings occurred closer to ground level, i.e. on the fringes of pits and lower on mounds, while Betula seedlings grew deeper in pits and higher on mounds. The position of the Betula seedlings indicate that they may have a competitive advantage over Pinus seedlings in the dense seedling groups occurring in uprooting spots. We suggest that this initial difference in Pinus and Betula establishment may affect the subsequent within-gap tree species succession and can, in part, explain the general occurrence of Betula in conifer-dominated boreal forests.  相似文献   
10.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号