全文获取类型
收费全文 | 656篇 |
免费 | 48篇 |
国内免费 | 402篇 |
专业分类
1106篇 |
出版年
2024年 | 29篇 |
2023年 | 63篇 |
2022年 | 59篇 |
2021年 | 80篇 |
2020年 | 46篇 |
2019年 | 40篇 |
2018年 | 26篇 |
2017年 | 27篇 |
2016年 | 29篇 |
2015年 | 50篇 |
2014年 | 82篇 |
2013年 | 44篇 |
2012年 | 52篇 |
2011年 | 54篇 |
2010年 | 43篇 |
2009年 | 51篇 |
2008年 | 71篇 |
2007年 | 29篇 |
2006年 | 16篇 |
2005年 | 22篇 |
2004年 | 17篇 |
2003年 | 18篇 |
2002年 | 18篇 |
2001年 | 15篇 |
2000年 | 13篇 |
1999年 | 18篇 |
1998年 | 11篇 |
1997年 | 10篇 |
1996年 | 17篇 |
1995年 | 12篇 |
1994年 | 9篇 |
1993年 | 4篇 |
1992年 | 12篇 |
1991年 | 7篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1983年 | 5篇 |
排序方式: 共有1106条查询结果,搜索用时 15 毫秒
1.
泛素化修饰与植物免疫应答 总被引:1,自引:0,他引:1
植物暴露在细菌、病毒和真菌等病原微生物环境中,病虫害是限制农作物产量和品质的主要因素,而植物病虫害的防治依赖于对植物抗病机制的深入认识。近年来的研究表明,蛋白质泛素化广泛地参与植物防御调节。蛋白质泛素化是真核生物中重要的翻译后修饰方式之一,在植物中,泛素化修饰在多种信号传导途径中发挥作用,如激素、光、糖应答,发育调节和病原菌防御信号途径等。综述了蛋白质泛素化修饰在植物免疫应答中的调控作用。 相似文献
2.
表观遗传学对于微生物的生命进程起着重要作用。由限制-修饰系统调控的DNA修饰参与微生物的免疫防御系统,无限制-修饰系统调控的DNA修饰通过调控基因表达影响表型。然而,表观遗传信息还没有被常规地作为DNA信息收集分析。基于对DNA合成反应的动力学分析,单分子实时测序技术可以在获得基本序列数据的同时实现对被修饰核苷酸的检测。这个技术为微生物中已知DNA修饰的研究提供了新的平台,也为新型DNA修饰的发现做好准备。本文综述了单分子实时测序技术及其在微生物表观遗传学中的应用。 相似文献
3.
尽管重组粒细胞集落刺激因子(rhG-CSF)具有重大的治疗价值,然而在实际应用却受到体内半衰期过短因而需要频繁重复注射的限制.为了解决这一问题,我们利用两种不同分子量(5 kD和 20 kD)的单甲氧基聚乙二醇丙醛(mPEG-PAL)对rhG-CSF的N端氨基进行了定点PEG化修饰.通过正交实验的统计学方法得到了最适修饰条件.研究发现,PEG化后的rhG-CSF具有了更高的体外稳定性,其体内活性也得到了很大提高,体内作用时间得到很大延长.因此,对于rhG-CSF的N端氨基定点PEG化修饰,可以显著提高rhG-CSF的临床应用价值. 相似文献
4.
聚乙二醇定点修饰集成干扰素突变体Ⅱ 总被引:1,自引:0,他引:1
目的:用聚乙二醇(PEG)修饰集成干扰素突变体Ⅱ(IFN-Con-m2,IIFNm2),通过纯化获得新型修饰分子并对该分子进行抗胰蛋白酶水解稳定性及初步药代动力学研究。 方法:将mPEG20000定点偶联到IIFNm2的第86位Cys残基上,修饰后的产物经CM层析后,以SDS-PAGE考察其纯度,用WISH-VSV系统进行生物活性测定;在0.1%胰蛋白酶条件下考察体外抗酶解稳定性;并以SD大鼠进行初步药代动力学研究,绘制血药浓度-时间曲线。采用3P87软件进行数据拟合,分析药物动力学参数。 结果:干扰素修饰率约为50%,且绝大多数以单修饰体(mono-PEG- IIFNm2)形式存在;提纯后mono-PEG-IIFNm2 的纯度大于98%,比活性约为修饰前IIFNm2的1%。抗胰蛋白酶水解试验表明:30min后,IIFNm2抗病毒活性残留为8%,mono-PEG-IIFNm2为41%。初步药代动力学研究显示:IIFNm的消除半衰期为(1.57±0.34)h,mono-PEG-IIFNm2为(18.0±4.0)h。 结论:成功地偶联了PEG和IIFNm2,建立了mono-PEG-IIFNm2的纯化工艺,PEG修饰能增加IIFNm2的体外抗胰蛋白酶水解稳定性,并显著延长体内半衰期。 相似文献
5.
氧化修饰使HDL促动脉平滑肌细胞胆固醇流出减少 总被引:6,自引:0,他引:6
为了研究氧化修饰对高密度脂蛋白(HDL)转运细胞胆固醇地^3H-胆固醇负荷的培养人动脉平滑肌细胞(SMC)分别与天然HDL及Cu^2+akg HOCl氧化修饰的HDL在37℃温育不同时间后,分别测定细胞^3H-胆固醇清除率。结果发现,温育24h后,经Cu^2+或HOLl氧修饰后的HDL其细胞胆因醇清除率分别较天然HDL下降了30.0%和43.1%(p〈0.01)。结果还发现,Cu^2+或HOCl氧 相似文献
6.
G蛋白偶联受体(G-protein-coupled receptors,GPCRs)作为跨膜蛋白,其结构和功能同时受相互作用的蛋白质和脂质分子调控.S-棕榈酰化(S-palmitoylation)能够影响GPCRs与信号蛋白及膜脂分子的相互作用,在GPCRs相关的多项生理进程中发挥重要调节作用.棕榈酸与GPCRs的半胱氨酸间形成不稳定的硫酯键,其修饰动力学过程受棕榈酰转移酶(protein acly transferases,PATs)与硫酯酶(thioesterases)之间的可逆性双重调控,与受体活性及生理状态密切相关.棕榈酰化修饰多发生在GPCRs的C末端,通过棕榈酸侧链插入到质膜内侧而形成第4和/或第5个胞内环,从而影响GPCRs的构象,促进其正确折叠与成熟,并对GPCRs胞内转运、分选、下游信号转导、失敏、内化、寡聚化等活动产生影响.此外,棕榈酰化还与磷酸化、泛素化及亚硝基化等多种翻译后修饰机制相互作用,共同参与调节GPCRs的功能.GPCRs的棕榈酰化修饰酶学机制以及GPCRs蛋白复合体棕榈酰化修饰胞内动力学过程将是未来的研究热点. 相似文献
7.
DNA修复的表观遗传学调控 总被引:1,自引:0,他引:1
表观遗传学信息的改变是导致人类肿瘤形成的重要因素之一.基因组的稳定性经常会受到DNA损伤的威胁.然而,高度致密的染色质结构却极大地妨碍了DNA修复的进行.因此,真核生物细胞中必须有一个精确的机制来克服染色质这一天然的屏障.其中,组蛋白的共价修饰和ATP-依赖的染色质重塑通过改变染色质的结构,对DNA修复进程起着关键的调控作用.介绍了DNA修复过程中,发生在表观遗传学方面的主要调控过程,特别阐述了在DNA双链断裂损伤应答和修复过程中,组蛋白修饰和染色质重塑方面最新的研究进展,并对今后的发展方向进行了讨论. 相似文献
8.
文章利用斑马鱼胚胎成纤维细胞(PAC2), 研究烯醇化酶1(Enolase1, ENO1)多肽生化功能及其共价修饰的影响。首先体外合成甲基修饰、乙酰修饰、磷酸修饰和未修饰的ENO1多肽, 分别处理PAC2细胞, 然后检测处理细胞CCK-8、胞内外乳酸脱氢酶(Lactate dehydrogenase, LDH)和二磷酸甘油酸(2-phosphoglycerate, 2-PG)相对含量; 以及线粒体和溶酶体完整性; 同时利用PCR ARRAY试剂盒比较葡萄糖代谢通路变化。结果表明不同修饰的多肽处理后, 细胞增殖, 溶酶体和线粒体形态, 以及糖代谢通路发生了不同程度的改变。为了进一步研究乙酰化修饰ENO1多肽促进细胞增殖的代谢机制, 又将乙酰化修饰的多肽和空白对照处理的PAC2细胞进行转录组测序。转录组分析进一步显示乙酰化修饰的ENO1多肽可以改变糖、脂、蛋白质代谢途径, 并激活与癌症和病毒感染病的KEGG通路。研究结果提示烯醇化酶1的多种生化功能可能是蛋白翻译后不同化学修饰的结果。 相似文献
9.
真核生物核小体组蛋白修饰引起染色质重塑(Chromatin remodeling)是表观遗传的重要调控机制.乙酰化修饰(Acetylation modification)是其中一种重要的方式.组蛋白乙酰化修饰位点集中在各种组蛋白N末端赖氨酸残基上.细胞内存在功能拮抗的多种乙酰基转移酶和去乙酰化酶,二者相互竞争,共同调节组蛋白的乙酰化状态,通过影响核小体结构的致密性,并在多种效应分子的参与下,实现对基因的表达调控.以真核模式生物酿酒酵母(Saccharomyces cerevisiae)为对象,综述乙酰基转移酶和去乙酰化酶的种类、作用特点以及其基因调控的分子机制等方面的最新研究进展. 相似文献
10.
目的:探讨PKR通过SUMO 化修饰上调P53 功能,阐明胰岛beta细胞增殖抑制的分子机制。方法:转染wt-PKR 质粒并结合
BEPP刺激,诱导PKR在胰岛beta细胞特异性激活。免疫印迹和免疫共沉淀技术检测P53 及P53-SUMO-1 蛋白结合水平变化;并给
予SUMO 化抑制剂Spectomycin B1,分析其相关分子机制。结果:免疫印迹和实时定量PCR 检测表明:PKR 特异激活能诱导P53
蛋白水平而不是mRNA水平上调;免疫共沉淀分析显示:PKR 促进了SUMO-1 与P53 蛋白结合水平的增加;而Spectomycin B1
能抑制PKR 诱导的P53 蛋白水平及其与SUMO 结合的增加。结论:PKR能通过促进P53 的SUMO 化修饰,上调其功能,诱导胰
岛beta细胞增殖抑制,可能参与2 型糖尿病的发生和病程发展。 相似文献