首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   6篇
  国内免费   2篇
  207篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   11篇
  2011年   15篇
  2010年   7篇
  2009年   6篇
  2008年   12篇
  2007年   6篇
  2006年   12篇
  2005年   8篇
  2004年   15篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   3篇
  1959年   1篇
  1955年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
1.
Genetic diversity was studied in six subpopulations (a total of 60 individuals) of wild barley, Hordeum spontaneum , the progenitor of cultivated barley, sampled from six stations located along a transect of 300 m across the two opposing slopes of 'Evolution Canyon', a Mediterranean microsite at Lower Nahal Oren, Mt Carmel. The two opposing slopes are separated by between 100 and 400 m and designated SFS (South-Facing Slope) and NFS (North-Facing Slope) with each having three equidistant test stations. The SFS, which receives up to 300% more solar radiation, is drier, ecologically more heterogeneous, fluctuating, and more stressful than the NFS. Analysis of 12 RAPD primers, representing a total of 51 putative loci, revealed a significant inter- and intraslope variation in RAPD band polymorphism. A significantly higher proportion of polymorphic RAPD loci was found amongst the subpopulations on the SFS (mean P = 0.909) than on the NFS (mean P = 0.682), on the basis of the presence and absence of 22 strong bands. Polymorphism generally increased upwards from the bottom to the top of the SFS (0.636, 0.773, 0.955) and NFS (0.409, 0.500, 0.545), respectively. Gametic phase disequilibria estimates, D, revealed SFS and NFS unique predominant combinations which sharply differentiated the two slopes and indicated that there is differential interslope selection favouring slope-specific multilocus combinations of alleles, or blocks of genes over tens to hundreds of meters. This suggests that selection overrides migration. RAPD polymorphism appears to parallel allozyme diversity which is climatically adaptive and driven by natural selection in the same subpopulations at the microsite.  相似文献   
2.
The pineal gland of the mole-rat (Spalax ehrenbergi,Nehring)   总被引:1,自引:0,他引:1  
Summary A comparative investigation of the distribution of monoaminergic neurons in non-malacostracan crustaceans was performed with the histochemical fluorescence method of Falck-Hillarp.Two fluorophores were found: the more widespread of the two emits a green fluorescence; and the more sparsely distributed emits a yellow to brown-yellow fluorescence.Specific green fluorescent areas were shown to exist in the protocerebrum. The central body and the optic ganglia of the compound eye (where present) are always fluorescent. Moreover, the centre of the nauplius eye may have a green fluorophore, as in ostracods, and a neuropile area, here called the frontal area. These neuropile centres are known from ordinary histological studies of the nervous system. In addition, there are specific monoaminergic centres, such as the so-called dorsal area of phyllopods and anostracans as well as the copepod specific areas. Specific monoaminergic areas appear in the deutocerebrum and the suboesophageal ganglion where they are particularly well developed.Presumed sensory neurons in the cavity receptor organ of Artemia salina are shown to be monoaminergic. Monoaminergic sensory neurons have not been described previously in Arthropods.Presumed motor innervation of hind-gut and trunk muscles is also found, and it is concluded that in crustaceans neurons of every type (sensory, internuncial, motor) may be monoaminergic.We have enjoyed unrestricted laboratory facilities at the Department of Histology, Faculty of Medicine, and with great pleasure express our sincere thanks to Prof. Bengt Falck. — Grants from the Swedish Natural Science Research Council (2760-007), the Swedish Medical Research Council (04X-712), the Royal Swedish Academy of Science (Hierta-Retzius), the Royal Physiographic Society of Lund, and the University of Lund supported the work.  相似文献   
3.
Chromosome 4 controls potential water use efficiency ({delta}13C) in barley   总被引:1,自引:0,他引:1  
By combining the approaches of whole-shoot carbon discriminationand genetic analysis, we found that chromosome 4 controls potentialwater use efficiency (  相似文献   
4.
Genome-wide analysis demonstrates extensive genomic adaptive complexes involved in sympatric speciation between blind mole rats (Spalax galili) in abutting populations living in basalt and chalk soils. Among the gene ontology (GO) enrichment, musculature and metabolism stood out in basalt dwellers while nutrition and neurogenetics were highlighted in chalk residents. Measurements of mechanisms regulating protein homeostasis inspired by these GO terms suggest that at the proteomic level there is also a habitat/soil-type driven divergence with the basalt residents exhibiting higher proteasome activity whereas elevated levels of markers of autophagy are evident in the chalk inhabitants.  相似文献   
5.
Summary An analysis is presented of genetic differentiation in the non-transcribed spacers of ribosomal DNA (NTS rDNA). Diversity, environmental correlates and the phylogenetic relationships are examined within and between species of the actively speciating subterranean mole rat, superspeciesSpalax ehrenbergi (2n=52, 54, 58, 60) in Israel. This analysis is based on a previous study of the geographic distribution of restriction fragment length polymorphisms of NTS rDNA. Here we present results indicating that NTS rDNA diversity exists mostly (66%) within populations, while 20% is between populations within species, and 14% between species. Multivariate discriminant analysis succeeded in separating 10 of the 13 populations (77%) into their correct chromosomal species, on the basis of the combination of three NTS rDNA repetypes. The phylogenetic relationships suggest that the complex involves two pairs of closely related species (2n=52–54 and 2n=58–60). NTS rDNA diversity, as well as the decrease southward in frequency of repetype C, are correlated with climatic factors of humidity and temperature. These data are discussed in terms of the evolutionary forces of migration and selection which may cause NTS rDNA differentiation. Climatic selection appears to be the major differentiating factor of NTS rDNA.  相似文献   
6.
Genomic diversity of anonymous regions across the genome, most probably including coding and noncoding amplified fragment length polymorphisms (AFLPs), was examined in 20 individuals of the blind mole-rat, Spalax galili, one of four allospecies of the Spalax ehrenbergi superspecies of blind subterranean mole-rats in Israel. We compared 10 individuals from two nearby populations in Upper Galilee, separated by only a few dozen to hundreds of metres and living in two sharply contrasting ecologies: white chalk and rendzina soil with Sarcopterium spinosum and Majorana syriaca versus black volcanic basalt soil with Carlina hispanica-Psorelea bitominosa and Alhagi graecorum plant formations. The microsite tested ranged in an area of less than 10000 m2. Out of 729 AFLP loci, 433 (59.4%) were polymorphic, with 211 soil unique alleles. Genetic polymorphism was significantly higher on the ecologically more xeric and stressful chalky rendzina soil than on the neighbouring mesic basalt soil. This is a remarkable pattern for a mammal that can disperse each generation between tens to hundreds of metres. These results cannot be explained by migration (which causes homogenization) or by chance (which will exclude sharp genomic soil divergence). Natural selection is the only evolutionary adaptive force that can cause genetic divergence across the genome matching the sharp microscale ecological contrast.  相似文献   
7.
Resistance Gene Candidate2 (RGC2) genes belong to a large, highly duplicated family of nucleotide binding site-leucine rich repeat (NBS-LRR) encoding disease resistance genes located at a single locus in lettuce (Lactuca sativa). To investigate the genetic events occurring during the evolution of this locus, approximately 1.5- to 2-kb 3' fragments of 126 RGC2 genes from seven genotypes were sequenced from three species of Lactuca, and 107 additional RGC2 sequences were obtained from 40 wild accessions of Lactuca spp. The copy number of RGC2 genes varied from 12 to 32 per genome in the seven genotypes studied extensively. LRR number varied from 40 to 47; most of this variation had resulted from 13 events duplicating two to five LRRs because of unequal crossing-over within or between RGC2 genes at one of two recombination hot spots. Two types of RGC2 genes (Type I and Type II) were initially distinguished based on the pattern of sequence identities between their 3' regions. The existence of two types of RGC2 genes was further supported by intron similarities, the frequency of sequence exchange, and their prevalence in natural populations. Type I genes are extensive chimeras caused by frequent sequence exchanges. Frequent sequence exchanges between Type I genes homogenized intron sequences, but not coding sequences, and obscured allelic/orthologous relationships. Sequencing of Type I genes from additional wild accessions confirmed the high frequency of sequence exchange and the presence of numerous chimeric RGC2 genes in nature. Unlike Type I genes, Type II genes exhibited infrequent sequence exchange between paralogous sequences. Type II genes from different genotype/species within the genus Lactuca showed obvious allelic/orthologous relationships. Trans-specific polymorphism was observed for different groups of orthologs, suggesting balancing selection. Unequal crossover, insertion/deletion, and point mutation events were distributed unequally through the gene. Different evolutionary forces have impacted different parts of the LRR.  相似文献   
8.
The complete mitochondrial control region was sequenced for 60 individuals representing different populations for each of the four species of the subterranean mole rat Spalax ehrenbergi superspecies in Israel: Spalax galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58), and S. judaei (2n = 60). The control region of all species and populations is very similar both in length (979 to 983 bp) and in base composition. As in agreement with previous surveys on mitochondrial control regions on mammals, the mole rat control region can be divided into a central domain and two flanking domains, ETAS (extended termination associated sequences) and CSB (conserved sequence blocks). Along with the common conserved blocks found in these domains (ETAS1, ETAS2, CSB1, CSB2, and CSB3), we have also detected in all individuals an ETAS1-like and a CSB1-like element, both in the ETAS domain. The most conserved region was the central domain, followed by the CSB and ETAS domains, showing important differences in the four species analyzed. Phylogenetic analysis supported the existence of two clades. One clade contained individuals belonging to Spalax galili (2n = 52) and S. golani (2n = 54), separated in two different branches depending on the species. The other clade contained individuals belonging to S. carmeli (2n = 58) and S. judaei (2n = 60) mixed together, suggesting a more recent event of speciation. Within species we have observed a southward trend of increasing variability. These results have been explained as a consequence of the adaptation of the species to ecological factors such as aridity and temperature stresses.  相似文献   
9.
In the present study, a soil microfungal community was examined over a one-year period (1999–2000) at the western shore of the Dead Sea. A total of 78 species from 40 genera were isolated. The most prominent features of mycobiota of the territory studied were: (i) the prevailing number of melanin-containing micromycetes (46 species, 65.5 % of the total isolate number); (ii) a large share of teleomorphic Ascomyceta (26 species, 18.5 % of isolates); (iii) combination of true soil and plant surface inhabiting species; (iv) spatial and temporal variation of the mycobiota composition; (v) very low fungal density (nearly 500-fold lower than in the Judean Desert soil). These features are formed under the extremely stressful xeric and oligotrophic conditions in which the Dead Sea coastal micromycete community exists. Nine species (Alternaria alternata, A. raphani, Aspergillus niger, Aureobasidium pullulans, Chaetomium globosum, Ch. murorum, Cladosporium cladosporioides, Penicillium aurantiogriseum, and Stachybotrys chartarum) were considered a characteristic micromycete complex for the Dead Sea coastal habitat based on the spatial and temporal occurrence of these species. Many of the micromycetes isolated, including almost all the species listed above, are known to be distributed worldwide occurring in different soil types. This confirms the conclusion of many mycologists working in areas with saline and arid soils that there is no halo-and thermophilous mycobiota characteristic for those soils.  相似文献   
10.
Chromatographic separation of the non-heme proteins from the erythrocytes of the subterranean mole rat belonging to the superspecies Spalax ehrenbergi from Israel revealed two major peaks. On sequence analyses, the larger peak corresponded to a 56 kDa selenium-binding protein (SeBP) previously characterized from mouse and human liver, and the second peak to the low-activity carbonic anhydrase (CA) isozyme, CA I. There was no evidence of the high-activity CA II isozyme normally found in the red cells of all amniotes tested to date. Thus, the mole rat appears to be the first mammalian species to express both a SeBP and the low-activity CA I isozyme, as the major non-heme proteins in its red blood cells. It is possible that the absence of the high-activity CA II isozyme may be advantageous to the mole rat in adapting to the low O2 and high CO2 environment of its underground burrows. It is also likely that the 56 kDa SeBP may play an important adaptive role in the physiology of the red cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号