首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22096篇
  免费   1785篇
  国内免费   2055篇
  25936篇
  2024年   62篇
  2023年   280篇
  2022年   638篇
  2021年   1041篇
  2020年   791篇
  2019年   935篇
  2018年   877篇
  2017年   686篇
  2016年   900篇
  2015年   1418篇
  2014年   1644篇
  2013年   1744篇
  2012年   2123篇
  2011年   1890篇
  2010年   1150篇
  2009年   1070篇
  2008年   1222篇
  2007年   1043篇
  2006年   980篇
  2005年   786篇
  2004年   655篇
  2003年   578篇
  2002年   461篇
  2001年   370篇
  2000年   331篇
  1999年   306篇
  1998年   227篇
  1997年   197篇
  1996年   169篇
  1995年   154篇
  1994年   177篇
  1993年   119篇
  1992年   145篇
  1991年   131篇
  1990年   105篇
  1989年   93篇
  1988年   61篇
  1987年   65篇
  1986年   49篇
  1985年   59篇
  1984年   25篇
  1983年   27篇
  1982年   18篇
  1981年   17篇
  1980年   12篇
  1979年   13篇
  1978年   12篇
  1976年   12篇
  1975年   12篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
3.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   
4.
5.
6.
7.
8.
slyD encodes a 196 amino acid polypeptide that is a member of the FKBP family of cis–trans peptidyl–prolyl isomerases (PPIases). slyD mutations affect plaque formation by the phage φX174 by blocking the action of the phage lysis protein E. Here we describe the selection of a set of spontaneous slyD mutations conferring resistance to the expression of gene E from a plasmid. These mutations occur disproportionately in residues of SlyD that, based on the structure of the prototype mammalian FKBP12, make ligand contacts with immunosuppressing drug molecules or are conserved in other FKBP proteins. A wide variation in the plating efficiency of φX174 on these E  R strains is observed, relative to the parental, indicating that these alleles differ widely in residual SlyD activity. Moreover, it is found that slyD mutations cause significant growth rate defects in Escherichia coli B and C backgrounds. Finally, overexpression of slyD causes filamentation of the host. Thus, among the FKBP genes found in organisms across the evolutionary spectrum, slyD is unique in having three distinct drug-independent phenotypes.  相似文献   
9.
10.
Immunization of mice with a synthetic GM3-lactam-BSA (bovine serum albumin) conjugate (designed to emulate the corresponding natural GM3-lactone conjugate), followed by fusion of splenocytes with myeloma cells, gave rise to more than 300 monoclonal hybridomas producing antibodies to GM3-lactam-BSA, which did not react with Glc-BSA and BSA. Eight antibody clones were randomly chosen from the positive 300 hybridomas. The eight clones, all belonging to the IgG class, were unreactive against GM3-ganglioside, whereas two antibodies (P5-1 and P5-3, both IgG1, ) reacted with GM3-ganglioside lactone. Binding of these two antibodies to the GM3-lactam-BSA conjugate was inhibited by soluble glycosides of GM2-, GM3-, and GM4-lactam and by GM3- and GM4-lactam, respectively, but not by Gb3 or asialo-GM1 and GM2-saccharides. A third antibody (P3; IgG2b, ) was inhibited by GM2-, GM3-, and GM4-lactam, but did not recognize GM3-ganglioside lactone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号