首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Although individual‐level variation (IV) is ubiquitous in nature, it is not clear how it influences species coexistence. Theory predicts that IV will hinder coexistence but empirical studies have shown that it can facilitate, inhibit, or have a neutral effect. We use a theoretical model to explore the consequences of IV on local and regional species coexistence in the context of spatial environmental structure. Our results show that individual variation can have a positive effect on species coexistence and that this effect will critically depend on the spatial structure of such variation. IV facilitates coexistence when a negative, concave‐up relationship between individuals’ competitive response and population growth rates propagates to a disproportionate advantage for the inferior competitor, provided that each species specialises in a habitat. While greater variation in the preferred habitat generally fosters coexistence, the opposite is true for non‐preferred habitats. Our results reconcile theory with empirical findings.  相似文献   

2.
Aim It is generally believed that communities of small organisms, or those with small propagules, are structured mainly by local niche‐based processes, and less by dispersal limitation. Conversely, weaker environmental and stronger spatial structure, indicating dispersal limitation, are expected to occur more frequently in communities of large organisms. However, this hypothesis has rarely been tested by comparing spatial and environmental effects across groups of organisms of different size (or with different size of propagules) sampled at the same set of sites. Here, we test it in urban environments. Location Thirty‐two cities in 10 countries of Central Europe and Benelux. Methods We compared effects of spatial location and climate on species composition of different groups of organisms sampled in corresponding types of urban habitats. The studied groups were: (1) subaerial cyanobacteria and algae, (2) vascular plants, (3) land snails; and subgroups of vascular plants with different life form and dispersal mode, namely: (4) herbs, (5) animal‐dispersed trees and shrubs, and (6) wind‐dispersed trees and shrubs. Data were analysed by variation partitioning based on redundancy analysis (RDA) with principal coordinates of neighbour matrices (PCNM). Eighteen PCNM eigenvectors (expressing spatial effects) and mean annual temperature, July–January temperature difference and annual precipitation sum (expressing environmental effects) were used as explanatory variables. Results Pure effects of climate on species composition, indicating niche‐based processes, were not significant for any group or subgroup of the studied organisms. In contrast, pure effects of space, indicating dispersal limitation, were significant for all groups and subgroups except herbs. Surprisingly, the community of cyanobacteria/algae possessed much stronger spatial structure independent of climate than communities of larger organisms, although cyanobacteria/algae had the lowest beta diversity among the studied cities. Main conclusions We hypothesize that the community of subaerial cyanobacteria/algae is structured by natural processes which involve dispersal limitation, whereas communities of urban plants and snails are influenced by human‐assisted dispersal of their propagules between cities, which results in weaker dispersal limitation. Our study indicates that dispersal vectors can be more important for community structure than size of organisms or of their propagules.  相似文献   

3.
Studies focusing on the effects of spatial processes versus environmental filtering on aquatic metacommunities have so far been focused almost entirely on relatively isolated systems, such as sets of different lakes or streams. In contrast, metacommunity patterns and underlying processes within a single aquatic system have received less attention. In this study, we aimed to examine how strongly variations in different diversity indices are affected by spatial processes (dispersal) versus local environmental conditions (species sorting) within a large lake system. Modern biodiversity research focuses on multiple diversity facets because different indices may be uncorrelated within and between facets, and they may thus describe different phenomena. We investigated the relationship of littoral macroinvertebrate diversity with environmental and spatial factors using 10 indices of species, functional and taxonomic diversity. Using spatial factors as proxies of dispersal, we decomposed variation in diversity indices into fractions attributable to environmental and spatial factors. Our results highlighted generally equal or higher importance of spatial processes in controlling the variation in diversity indices when compared to local environmental variables. Local environmental conditions accounted for higher proportion of variation only in a single index (i.e. taxonomic diversity). These findings suggest that the effects of high dispersal rates (mass effects) may override the influences of local environmental conditions (species sorting) on the diversity in highly‐connected aquatic system, such as large lakes and marine coastal systems. Our results further suggest that biodiversity assessment and environmental monitoring in highly‐connected systems cannot rely solely on the idea of environmental control. We hence recommend that the roles of both environmental and spatial processes should be integrated in basic and applied ecological research of aquatic systems.  相似文献   

4.
Metacommunity theory proposes that a collection of local communities are linked by dispersal and the resulting compositions are a product of both niche‐based (species sorting) and spatial processes. Determining which of these factors is most important in different habitats can provide insight into the regulation of community assembly. To date, the metacommunity organization of heterotrophic soil bacteria is largely unknown. Spatial variation of soil bacterial communities could arise from (1) the resource heterogeneity produced by plant communities through root exudation and/or litter inputs; (2) the heterogeneity of soil environmental properties; and (3) pure spatial processes, including dispersal limitation and stochastic assembly. Understanding the relative importance of these factors for soil bacterial community structure and function could increase our ability to restore soil communities. We utilized an ongoing tallgrass prairie restoration experiment in northeastern Kansas to assess if restoring native plant communities produced changes in bacterial communities 6 years after restoration. We further examined the relative importance of the spatial heterogeneity of plant communities, soil properties, and pure spatial effects for bacterial community structure in the old‐field restoration site. We found that soil bacterial communities were not influenced by plant restoration, but rather, by the local heterogeneity of soil environmental properties (16.9% of bacterial community variation) and pure spatial effects (11.1%). This work also stresses the idea that restoring bacterial communities can take many years to accomplish due to the inherent changes that occur to the soil after cultivation and the time it takes for the re‐establishment of soil quality.  相似文献   

5.
1. The structure of biological communities reflects the influence of both local environmental conditions and processes such as dispersal that create patterns in species’ distribution across a region. 2. We extend explicit tests of the relative importance of local environmental conditions and regional spatial processes to aquatic plants, a group traditionally thought to be little limited by dispersal. We used partial canonical correspondence analysis and partial Mantel tests to analyse data from 98 lakes and ponds across Connecticut (northeastern United States). 3. We found that aquatic plant community structure reflects the influence of local conditions (pH, conductivity, water clarity, lake area, maximum depth) as well as regional processes. 4. Only 27% of variation in a presence/absence matrix was explained by environmental conditions and spatial processes such as dispersal. Of the total explained, 45% was related to environmental conditions and 40% to spatial processes. 5. Jaccard similarity declined with Euclidean distance between lakes, even after accounting for the increasing difference in environmental conditions, suggesting that dispersal limitation may influence community composition in the region. 6. The distribution of distances among lakes where species occurred was associated with dispersal‐related functional traits, providing additional evidence that dispersal ability varies among species in ways that affect community composition. 7. Although environmental and spatial variables explained a significant amount of variation in community structure, a substantial amount of stochasticity also affects these communities, probably associated with unpredictable colonisation and persistence of the plants.  相似文献   

6.
1. Understanding the processes that structure community assembly across landscapes is fundamental to ecology and for predicting and managing the consequences of anthropogenically induced changes to ecosystems. 2. We assessed the community similarity of fish, macroinvertebrate and vegetation communities against geographic distances ranging from 4 to 480 km (i.e. distance–decay relationships) to determine the balance between local environmental factors and regional dispersal processes, and thus whether species‐sorting (niche processes) or dispersal limitation (neutral processes) was more important in structuring these assemblages in Australia’s wet‐dry tropics. We investigated whether the balance between niche and dispersal processes depended on the degree of hydrological connectivity, predicting that dispersal processes would be more important at connected sites, and also whether there was spatial concordance among these three assemblage types. 3. There was significant but weak spatial concordance among the study communities, suggesting limited potential for surrogacy among them. Distance–decay in community similarity was not observed for any study assemblage at perennial sites, suggesting dispersal was not limiting and assemblages were structured more strongly by local niche processes at these connected sites. At intermittent sites, weak distance–decay relationships for each assemblage type were confounded by significant relationships with environmental dissimilarity, suggesting that dispersal limitation contributed, albeit weakly, to niche processes in structuring our three study assemblages at disconnected sites. 4. Two environmental factors, flow regime and channel width, explained significant proportions of variation in all three assemblages, potentially contributing to the observed spatial concordance between them and representing local environmental gradients along which these communities re‐assemble after the wet season, according to niche rather than dispersal processes.  相似文献   

7.
Understanding the evolution of dispersal is essential for understanding and predicting the dynamics of natural populations. Two main factors are known to influence dispersal evolution: spatio‐temporal variation in the environment and relatedness between individuals. However, the relation between these factors is still poorly understood, and they are usually treated separately. In this article, I present a theoretical framework that contains and connects effects of both environmental variation and relatedness, and reproduces and extends their known features. Spatial habitat variation selects for balanced dispersal strategies, whereby the population is kept at an ideal free distribution. Within this class of dispersal strategies, I explain how increased dispersal is promoted by perturbations to the dispersal type frequencies. An explicit formula shows the magnitude of the selective advantage of increased dispersal in terms of the spatial variability in the frequencies of the different dispersal strategies present. These variances are capable of capturing various sources of stochasticity and hence establish a common scale for their effects on the evolution of dispersal. The results furthermore indicate an alternative approach to identifying effects of relatedness on dispersal evolution.  相似文献   

8.
Aiming to elucidate whether large‐scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in‐lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in‐lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances.  相似文献   

9.
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence.  相似文献   

10.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.  相似文献   

11.
Patterns of clonal growth and their controls on the level of individuals have been studied thoroughly, but little is known about the actual clonal mobility of plant individuals in vegetation and about its role in generating vegetation patterns and influencing species coexistence. Current evidence shows that communities are composed of spatially nonmobile ‘matrix‐forming species’ and mobile ‘inter‐matrix’ species, while local between‐species variation in clonal mobility has been shown to be positively correlated to small‐scale richness. We identify two major gaps in the knowledge. (1) Clonal mobility has a strong species‐specific component, but the existing information is mainly qualitative and describes the potential mobility of species the best. Also, species may respond by their clonal growth in a plastic way to some environmental stimuli, such as neighbors or abiotic environment, but this data comes almost exclusively from artificial conditions. We know very little of the actual spatial mobility of clonal plant individuals in the field and of the factors that determine it. (2) Theoretical research indicates that localized dispersal plays prime role in determination of community structure. While clonal mobility shares many important features with the seed dispersal, it also shows important differences to it, such as in dispersal kernel (non‐monotonic in clonal dispersal), role of microsite limitation, and role of plasticity. We have little information how systematic are these differences, and whether these differences in dispersal can play any role in shaping community dynamics. We conclude that clonal mobility has an important role in structuring plant communities in a small scale and propose further studies to address specific mechanisms, as well as community context of evolution of clonality.  相似文献   

12.
A population experiences environmental variation both directly, through effects on life history parameters such as fecundity, and indirectly, through effects on the population distributions of competitors and thus on the distribution of competition. Which spatial and temporal scales of environmental variation most influence the coexistence of two species thus depends in part on the degree to which the resident population responds to different scales of variation. In this paper, I calculate an approximation for a spatiotemporal population distribution as the result of a filter function convolved with the environmental variation. I find that there is no straightforward connection between spatial or temporal scales inherent to an organism's life history, such as mean lifetime or dispersal distance, and the population's sensitivity to variation at different scales. Rather, life history traits interact sensitively with the way environmental variation affects the organism. I comment on the implications for variation-mediated coexistence.  相似文献   

13.
Aim We examined the relative contributions of spatial gradients and local environmental conditions to macroinvertebrate assemblages of boreal headwater streams at three hierarchical extents: bioregion, ecoregion and drainage system. We also aimed to identify the environmental variables most strongly related to assemblage structure at each study scale, and to assess how the importance of these variables is related to regional context and spatial structuring at different scales. Location Northern Finland ( 62 – 68° N, 25–32° E). Methods Variation in macroinvertebrate data was partitioned using partial canonical correspondence analysis into components explained by spatial variables (nine terms from the cubic trend surface regression), local environmental variables (15 variables) and spatially structured environmental variation. Results The strength of the relationship between assemblage structure and local environmental variables increased with decreasing spatial extent, whereas assemblage variation related to spatial variables and spatially structured environmental variation showed the opposite pattern. At the largest extents, spatial variation was related to latitudinal gradients, whereas spatial autocorrelation among neighbouring streams was the likely mechanism creating spatial structure within drainage systems. Only stream size and water acidity were consistently important in explaining assemblage structure at all study scales, while the importance of other environmental variables was more context‐dependent. Main conclusions The importance of local environmental factors in explaining macroinvertebrate assemblage structure increases with decreasing spatial extent. This scale‐related pattern is not caused solely by changes in study extent, however, but also by variable sample sizes at different regional extents. The importance of environmental gradients is context‐dependent and few factors are likely to be universally important correlates of macroinvertebrate assemblage structure. Finally, our results suggest that bioassessment should give due attention to spatial structuring of stream assemblages, because important assemblage gradients may not only be related to local factors but also to biogeographical constraints and neighbourhood dispersal processes.  相似文献   

14.
Two competing consumer species may coexist using a single homogeneous resource when the more efficient consumer--the one having the lowest equilibrium resource density--has a more nonlinear functional response that generates consumer-resource cycles. We extend this model of nonequilibrium coexistence, as proposed by Armstrong and McGehee, by putting the interaction into a spatial context using two frameworks: a spatially explicit individual-based model and a spatially implicit metapopulation model. We find that Armstrong and McGehee's mechanism of coexistence can operate in a spatial context. However, individual-based simulations suggest that decreased dispersal restricts coexistence in most cases, whereas differential equation models of metapopulations suggest that a low rate of dispersal between subpopulations often increases the coexistence region. This difference arises in part because of two potentially opposing effects on coexistence due to the asynchrony in the temporal dynamics at different locations. Asynchrony implies that the less efficient species is more likely to be favored in some spatial locations at any given time, which broadens the conditions for coexistence. On the other hand, asynchrony and dispersal can also reduce the amplitude of local population cycles, which restricts coexistence. The relative influence of these two effects depends on details of the population dynamics and the representation of space. Our results also demonstrate that coexistence via the Armstrong-McGehee mechanism can occur even when there is little variation in the global densities of either the consumers or the resource, suggesting that empirical studies of the mechanisms should measure densities on several spatial scales.  相似文献   

15.
The distribution of suitable habitat influences natal and breeding dispersal at small spatial scales, resulting in strong microgeographic genetic structure. Although environmental variation can promote interpopulation differences in dispersal behavior and local spatial patterns, the effects of distinct ecological conditions on within‐species variation in dispersal strategies and in fine‐scale genetic structure remain poorly understood. We studied local dispersal and fine‐scale genetic structure in the thorn‐tailed rayadito (Aphrastura spinicauda), a South American bird that breeds along a wide latitudinal gradient. We combine capture‐mark‐recapture data from eight breeding seasons and molecular genetics to compare two peripheral populations with contrasting environments in Chile: Navarino Island, a continuous and low density habitat, and Fray Jorge National Park, a fragmented, densely populated and more stressful environment. Natal dispersal showed no sex bias in Navarino but was female‐biased in the more dense population in Fray Jorge. In the latter, male movements were restricted, and some birds seemed to skip breeding in their first year, suggesting habitat saturation. Breeding dispersal was limited in both populations, with males being more philopatric than females. Spatial genetic autocorrelation analyzes using 13 polymorphic microsatellite loci confirmed the observed dispersal patterns: a fine‐scale genetic structure was only detectable for males in Fray Jorge for distances up to 450 m. Furthermore, two‐dimensional autocorrelation analyzes and estimates of genetic relatedness indicated that related males tended to be spatially clustered in this population. Our study shows evidence for context‐dependent variation in natal dispersal and corresponding local genetic structure in peripheral populations of this bird. It seems likely that the costs of dispersal are higher in the fragmented and higher density environment in Fray Jorge, particularly for males. The observed differences in microgeographic genetic structure for rayaditos might reflect the genetic consequences of population‐specific responses to contrasting environmental pressures near the range limits of its distribution.  相似文献   

16.
The distribution of resources in space has important consequences for the evolution of dispersal‐related traits. Dispersal moderates patterns of gene flow and, consequently, the potential for local adaptation to spatially differentiated resource types. We lack both models and experiments that evaluate how dispersal evolves in landscapes with multiple resources. Here, we investigate the evolution of dispersal in landscapes that contain two resource types that differ in their spatial autocorrelations. Individuals may possess ecological traits that give them a fitness advantage on one or the other resource. We find that resources differing in their spatial autocorrelation select for different optimal dispersal strategies and, further, that some multi‐resource landscapes can support the stable coexistence of distinct dispersal strategies. Whether divergence in dispersal strategies between resource specialists occurs depends on the underlying structure of the resources and the degree of linkage between dispersal strategies and ecological specialization. This work indicates that the spatial autocorrelation of resources is an important factor in determining when evolutionary branching is likely to occur, and sheds light on when secondary isolating mechanisms should arise between locally adapted specialists.  相似文献   

17.
Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short‐ (SDD) and long‐distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual‐based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual's genome: one allele coding for the probability of global dispersal and one allele coding for the variance σ of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism.  相似文献   

18.
We apply an evolutionary game theoretic approach to the evolution of dispersal in explicitly spatial metacommunities, using a flexible parametric class of dispersal kernels, namely 2Dt kernels, and study the resulting evolutionary dynamics and outcomes. We observe strong selective pressure on mean dispersal distance (i.e., the first moment), and weaker, but significant, one on the shape of dispersal kernel (i.e., higher moments). We investigate the effects of landscape topology and spatial heterogeneity on the resulting ‘optimal’ dispersal kernels. The shape—importantly the tail structure—and stability of evolutionarily optimal dispersal strategies are strongly affected by landscape topology or connectivity. Specifically, the results suggest that the optimal dispersal kernels in the river network topology have heavier tails and are stable, while those in the direct topology, where organisms are allowed to travel directly from one location to another, have relatively thin tails and may be unstable. We also find that habitat spatial heterogeneity enables coexistence and controls spatial distribution of distinct groups of dispersal strategies and that alteration in topology alone may not be sufficient to change such coexistence. This work provides a tool to translate environmental changes such as global climate change and human intervention into changes in dispersal behavior, which in turn may lead to important alterations of biodiversity and biological invasion patterns.  相似文献   

19.
Questions: To what extent are the distributions of tropical rain forest tree ferns (Cyatheaceae) related to environmental variation, and is habitat specialization likely to play a role in their local coexistence? Location: Lowland rain forest at La Selva Biological Station, Costa Rica. Methods: Generalized linear (GLM) and generalized additive (GAM) logistic regression were used to model the incidence of four tree fern species in relation to environmental and neighbourhood variables in 1154 inventory plots regularly distributed across 6 km2 of old‐growth forest. Small and large size classes of the two most abundant species were modelled separately to see whether habitat associations change with ontogeny. Results: GLM and GAM model results were similar. All species had significant distributional biases with respect to micro‐habitat. Environmental variables describing soil variation were included in the models most often, followed by topographic and forest structural variables. The distributions of small individuals were more strongly related to environmental variation than those of larger individuals. Significant neighbourhood effects (spatial autocorrelation in intraspecific distributions and non‐random overlaps in the distributions of certain species pairs) were also identified. Overlaps between congeners did not differ from random, but there was a highly significant overlap in the distributions of the two most common species. Conclusions: Our results support the view that habitat specialization is an important determinant of where on the rain forest landscape tree ferns grow, especially for juvenile plants. However, other factors, such as dispersal limitation, may also contribute to their local coexistence.  相似文献   

20.
Aims To identify the relative contributions of environmental determinism, dispersal limitation and historical factors in the spatial structure of the floristic data of inselbergs at the local and regional scales, and to test if the extent of species spatial aggregation is related to dispersal abilities. Location Rain forest inselbergs of Equatorial Guinea, northern Gabon and southern Cameroon (western central Africa). Methods We use phytosociological relevés and herbarium collections obtained from 27 inselbergs using a stratified sampling scheme considering six plant formations. Data analysis focused on Rubiaceae, Orchidaceae, Melastomataceae, Poaceae, Commelinaceae, Acanthaceae, Begoniaceae and Pteridophytes. Data were investigated using ordination methods (detrended correspondence analysis, DCA; canonical correspondence analysis, CCA), Sørensen's coefficient of similarity and spatial autocorrelation statistics. Comparisons were made at the local and regional scales using ordinations of life‐form spectra and ordinations of species data. Results At the local scale, the forest‐inselberg ecotone is the main gradient structuring the floristic data. At the regional scale, this is still the main gradient in the ordination of life‐form spectra, but other factors become predominant in analyses of species assemblages. CCA identified three environmental variables explaining a significant part of the variation in floristic data. Spatial autocorrelation analyses showed that both the flora and the environmental factors are spatially autocorrelated: the similarity of species compositions within plant formations decreasing approximately linearly with the logarithm of the spatial distance. The extent of species distribution was correlated with their a priori dispersal abilities as assessed by their diaspore types. Main conclusions At a local scale, species composition is best explained by a continuous cline of edaphic conditions along the forest‐inselberg ecotone, generating a wide array of ecological niches. At a regional scale, these ecological niches are occupied by different species depending on the available local species pool. These subregional species pools probably result from varying environmental conditions, dispersal limitation and the history of past vegetation changes due to climatic fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号