首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Plasmodium falciparum virulence is linked to its ability to sequester in post‐capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9‐96. Similar to the cytoadherent reference line FCR3, D10 strain expresses PfEMP1 on the surface of parasitized erythrocytes, however without any detectable cytoadhesion. To investigate which of the deleted subtelomeric genes may be implicated in parasite adhesion, we selected 12 genes for D10 complementation studies that are predicted to code for proteins exported to the red blood cell. We identified a novel single copy gene (PF3D7_0936500) restricted to P. falciparum that restores adhesion to CD36, termed here virulence‐associated protein 1 (Pfvap1). Protein knockdown and gene knockout experiments confirmed a role of PfVAP1 in the adhesion process in FCR3 parasites. PfVAP1 is co‐exported with PfEMP1 into the host cell via vesicle‐like structures called Maurer's clefts. This study identifies a novel highly conserved parasite molecule that contributes to parasite virulence possibly by assisting PfEMP1 to establish functional adhesion at the host cell surface.  相似文献   

2.
The human malaria parasite, Plasmodium falciparum, modifies the red blood cells (RBCs) that it infects by exporting proteins to the host cell. One key virulence protein, P. falciparum Erythrocyte Membrane Protein‐1 (PfEMP1), is trafficked to the surface of the infected RBC, where it mediates adhesion to the vascular endothelium. We have investigated the organization and development of the exomembrane system that is used for PfEMP1 trafficking. Maurer's cleft cisternae are formed early after invasion and proteins are delivered to these (initially mobile) structures in a temporally staggered and spatially segregated manner. Membrane‐Associated Histidine‐Rich Protein‐2(MAHRP2)‐containing tether‐like structures are generated as early as 4 h post invasion and become attached to Maurer's clefts. The tether/Maurer's cleft complex docks onto the RBC membrane at ~ 20 h post invasion via a process that is not affected by cytochalasin D treatment. We have examined the trafficking of a GFP chimera of PfEMP1 expressed in transfected parasites. PfEMP1B‐GFP accumulates near the parasite surface, within membranous structures exhibiting a defined ultrastructure, before being transferred to pre‐formed mobile Maurer's clefts. Endogenous PfEMP1 and PfEMP1B‐GFP are associated with Electron‐Dense Vesicles that may be responsible for trafficking PfEMP1 from the Maurer's clefts to the RBC membrane.  相似文献   

3.
Transport of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) variants to the red blood cell (RBC) surface enables malarial parasite evasion of host immunity by modifying the antigenic and adhesive properties of infected RBCs. In this study, we applied the Bxb1 integrase system to integrate transgenes encoding truncated PfEMP1‐GFP fusions into cytoadherent A4 parasites and characterize their surface transport requirements. Our studies revealed that the semi‐conserved head structure of PfEMP1 proteins, in combination with the predicted transmembrane region and cytoplasmic tail, encodes sufficient information for RBC surface display. In contrast, miniPfEMP1 proteins with truncated head structures were exported to the RBC cytoplasm but were not detected at the RBC surface by flow cytometry or immuno‐electron microscopy. We demonstrated the absence of a mechanistic barrier to having native and miniPfEMP1 proteins displayed simultaneously at the RBC surface. However, surface‐exposed miniPfEMP1 proteins did not convey cytoadherence properties to their host cells, implicating potential steric considerations in host‐receptor interactions or the need for multiple domains to mediate cell binding. This study establishes a new system to investigate PfEMP1 transport and demonstrates that the PfEMP1 semi‐conserved head structure is under selection for protein transport, in addition to its known roles in adhesion.  相似文献   

4.
In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains instead obscure how sequestration is established, and how the earliest sexual stages, morphologically similar to asexual trophozoites, modify the infected erythrocytes and their cytoadhesive properties at the onset of gametocytogenesis. Here, purified P. falciparum early gametocytes were used to ultrastructurally and biochemically analyse parasite‐induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do not modify its surface with adhesive ‘knob’ structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50–60 variants of PfEMP1, is dramatically downregulated in the transition from asexual development to gametocytogenesis. Cytoadhesion assays show that such gene expression changes and host cell surface modifications functionally result in the inability of stage I gametocytes to bind the host ligands used by the asexual parasite to bind endothelial cells. In conclusion, these results identify specific differences in molecular and cellular mechanisms of host cell remodelling and in adhesive properties, leading to clearly distinct host parasite interplays in the establishment of sequestration of stage I gametocytes and of asexual trophozoites.  相似文献   

5.
6.
Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1α-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1α of IT4var60) expressed by parasite FCR3S1.2. The plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1α domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. The other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. In conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1α of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. The data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies.  相似文献   

7.
8.
The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring‐EXported Protein‐1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob‐associated histidine‐rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether‐like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α‐helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.  相似文献   

9.
Adherence of Plasmodium falciparum‐infected erythrocytes to host endothelium is conferred through the parasite‐derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.  相似文献   

10.
A major challenge in disease ecology is to understand how co‐infecting parasite species interact. We manipulate in vivo resources and immunity to explain interactions between two rodent malaria parasites, Plasmodium chabaudi and P. yoelii. These species have analogous resource‐use strategies to the human parasites Plasmodium falciparum and P. vivax: P. chabaudi and P. falciparum infect red blood cells (RBC) of all ages (RBC generalist); P. yoelii and P. vivax preferentially infect young RBCs (RBC specialist). We find that: (1) recent infection with the RBC generalist facilitates the RBC specialist (P. yoelii density is enhanced ~10 fold). This occurs because the RBC generalist increases availability of the RBC specialist's preferred resource; (2) co‐infections with the RBC generalist and RBC specialist are highly virulent; (3) and the presence of an RBC generalist in a host population can increase the prevalence of an RBC specialist. Thus, we show that resources shape how parasite species interact and have epidemiological consequences.  相似文献   

11.
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals'' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.  相似文献   

12.
Plasmodium falciparum invades human red blood cells (RBC), while Babesia divergens infects bovine and, occasionally, human RBC. The mammalian RBC is normally unable to endocytose or phagocytose and the events leading to invasion are incompletely understood. Initially, both parasites are surrounded by the RBC plasma membrane‐derived parasitophorous vacuolar membrane (PVM) that is formed during invasion. In P. falciparum‐infected RBC, the PVM persists at least until parasite replication is completed whereas it has been proposed that the B. divergens PVM is disintegrated soon upon invasion. Here, we have used a B. divergens strain adapted to human RBC to investigate the formation and fate of the PVM. Using ultrastructural analysis and whole‐mount or on‐section immunofluorescence and immunogold labelling, we demonstrate that the initial vacuolar membrane is formed from protein and lipid components of the RBC plasma membrane. Integral membrane proteins band 3 and glycophorin A and the cytoskeletal protein spectrin are associated with the PVM of the B. divergens, but are absent from the PVM of P. falciparum at the ring or the trophozoite stage. Our results provide evidence that the biophysical properties of the RBC cytoskeleton per se do not preclude the internalization of cytoskeletal proteins by invading parasites.  相似文献   

13.
Most human malaria deaths are caused by blood-stage Plasmodium falciparum parasites. Cerebral malaria, the most life-threatening complication of the disease, is characterised by an accumulation of Plasmodium falciparum infected red blood cells (iRBC) at pigmented trophozoite stage in the microvasculature of the brain(2-4). This microvessel obstruction (sequestration) leads to acidosis, hypoxia and harmful inflammatory cytokines (reviewed in (5)). Sequestration is also found in most microvascular tissues of the human body(2, 3). The mechanism by which iRBC attach to the blood vessel walls is still poorly understood. The immortalized Human Brain microvascular Endothelial Cell line (HBEC-5i) has been used as an in vitro model of the blood-brain barrier(6). However, Plasmodium falciparum iRBC attach only poorly to HBEC-5i in vitro, unlike the dense sequestration that occurs in cerebral malaria cases. We therefore developed a panning assay to select (enrich) various P. falciparum strains for adhesion to HBEC-5i in order to obtain populations of high-binding parasites, more representative of what occurs in vivo. A sample of a parasite culture (mixture of iRBC and uninfected RBC) at the pigmented trophozoite stage is washed and incubated on a layer of HBEC-5i grown on a Petri dish. After incubation, the dish is gently washed free from uRBC and unbound iRBC. Fresh uRBC are added to the few iRBC attached to HBEC-5i and incubated overnight. As schizont stage parasites burst, merozoites reinvade RBC and these ring stage parasites are harvested the following day. Parasites are cultured until enough material is obtained (typically 2 to 4 weeks) and a new round of selection can be performed. Depending on the P. falciparum strain, 4 to 7 rounds of selection are needed in order to get a population where most parasites bind to HBEC-5i. The binding phenotype is progressively lost after a few weeks, indicating a switch in variant surface antigen gene expression, thus regular selection on HBEC-5i is required to maintain the phenotype. In summary, we developed a selection assay rendering P. falciparum parasites a more "cerebral malaria adhesive" phenotype. We were able to select 3 out of 4 P. falciparum strains on HBEC-5i. This assay has also successfully been used to select parasites for binding to human dermal and pulmonary endothelial cells. Importantly, this method can be used to select tissue-specific parasite populations in order to identify candidate parasite ligands for binding to brain endothelium. Moreover, this assay can be used to screen for putative anti-sequestration drugs(7).  相似文献   

14.
Plasmodium falciparum exports several hundred effector proteins that remodel the host erythrocyte and enable parasites to acquire nutrients, sequester in the circulation and evade immune responses. The majority of exported proteins contain the Plasmodium export element (PEXEL; RxLxE/Q/D) in their N‐terminus, which is proteolytically cleaved in the parasite endoplasmic reticulum by Plasmepsin V, and is necessary for export. Several exported proteins lack a PEXEL or contain noncanonical motifs. Here, we assessed whether Plasmepsin V could process the N‐termini of diverse protein families in P. falciparum. We show that Plasmepsin V cleaves N‐terminal sequences from RIFIN, STEVOR and RESA multigene families, the latter of which contain a relaxed PEXEL (RxLxxE). However, Plasmepsin V does not cleave the N‐terminal sequence of the major exported virulence factor erythrocyte membrane protein 1 (PfEMP1) or the PEXEL‐negative exported proteins SBP‐1 or REX‐2. We probed the substrate specificity of Plasmepsin V and determined that lysine at the PEXEL P3 position, which is present in PfEMP1 and other putatively exported proteins, blocks Plasmepsin V activity. Furthermore, isoleucine at position P1 also blocked Plasmepsin V activity. The specificity of Plasmepsin V is therefore exquisitely confined and we have used this novel information to redefine the predicted P. falciparum PEXEL exportome .  相似文献   

15.
Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca2+ levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca2+ increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca2+ levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca2+ in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca2+]c. Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca2+]c in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells.  相似文献   

16.
During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.  相似文献   

17.

Background

The expression of the clonally variant virulence factor PfEMP1 mediates the sequestration of Plasmodium falciparum infected erythrocytes in the host vasculature and contributes to chronic infection. Non-cytoadherent parasites with a chromosome 9 deletion lack clag9, a gene linked to cytoadhesion in previous studies. Here we present new clag9 data that challenge this view and show that surface the non-cytoadherence phenotype is linked to the expression of a non-functional PfEMP1.

Methodology/Principal Findings

Loss of adhesion in P. falciparum D10, a parasite line with a large chromosome 9 deletion, was investigated. Surface iodination analysis of non-cytoadherent D10 parasites and COS-7 surface expression of the CD36-binding PfEMP1 CIDR1α domain were performed and showed that these parasites express an unusual trypsin-resistant, non-functional PfEMP1 at the erythrocyte surface. However, the CIDR1α domain of this var gene expressed in COS-7 cells showed strong binding to CD36. Atomic Force Microscopy showed a slightly modified D10 knob morphology compared to adherent parasites. Trafficking of PfEMP1 and KAHRP remained functional in D10. We link the non-cytoadherence phenotype to a chromosome 9 breakage and healing event resulting in the loss of 25 subtelomeric genes including clag9. In contrast to previous studies, knockout of the clag9 gene from 3D7 did not interfere with parasite adhesion to CD36.

Conclusions/Significance

Our data show the surface expression of non-functional PfEMP1 in D10 strongly indicating that genes other than clag9 deleted from chromosome 9 are involved in this virulence process possibly via post-translational modifications.  相似文献   

18.
19.
20.
A hallmark of the biology of Plasmodium falciparum blood stage parasites is their extensive host cell remodelling, facilitated by parasite proteins that are exported into the erythrocyte. Although this area has received extensive attention, only a few exported parasite proteins have been analysed in detail, and much of this remodelling process remains unknown, particularly for gametocyte development. Recent advances to induce high rates of sexual commitment enable the production of large numbers of gametocytes. We used this approach to study the Plasmodium helical interspersed subtelomeric (PHIST) protein GEXP02, which is expressed during sexual development. We show by immunofluorescence that GEXP02 is exported to the gametocyte‐infected host cell periphery. Co‐immunoprecipitation revealed potential interactions between GEXP02 and components of the erythrocyte cytoskeleton as well as other exported parasite proteins. This indicates that GEXP02 targets the erythrocyte cytoskeleton and is likely involved in its remodelling. GEXP02 knock‐out parasites show no obvious phenotype during gametocyte maturation, transmission through mosquitoes, and hepatocyte infection, suggesting auxiliary or redundant functions for this protein. In summary, we performed a detailed cellular and biochemical analysis of a sexual stage‐specific exported parasite protein using a novel experimental approach that is broadly applicable to study the biology of P. falciparum gametocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号